Application of nanotechnology for food safety.

Abhi Upadhyay, DVM, MS, Ph.D. Department of Animal Science, University of Connecticut, Storrs, CT

New England Vegetable and Fruit Conference

December 17-19, 2024

Overview

The challenge

Global Population Growth

Global Population growth -1950-2100

Data source: United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019.

Regional Trends in Population Growth

Source: UN, 2015.

What about Food Security?

THE GLOBAL AGRICULTURAL PRODUCTIVITY (GAP) INDEX™

Sustainable food production requires innovations from farm to fork

Food safety: Key to Sustainabili ty

What is food safety?

Food safety is the process or action that prevents food from containing substances that could harm a person's health.

If it is not safe, it is not food

Food and Agriculture Organization of the United Nations

Food safety is everyone's business

There is no food security without food safety

1 5

Foodborne illnesses

AN ESTIMATED 1 in 6 Americans get sick from foodborne diseases every year.

Foodborne illnesses in the USA

Each year, foodborne infections result in

- 48 million illnesses
- 128,000 hospitalizations
- 3000 deaths¹

Annual health care costs ~ 55-90 billion USD²

Improve Food Safety

Current research program at UConn

Developing intervention strategies for controlling foodborne pathogens at pre-harvest and post-harvest stages.

Pre-harvest Food Safety

Intervention strategies

Phytochemicals

Antimicrobial gases

Phytochemical Nanoemulsions

Ultra-fine bubbles

Nanoemulsions

- Colloidal dispersion systems composed of two or more immiscible phases, consisting of oil, aqueous phase and an emulsifier to form a single phase.
- Could be oil-in-water (o/w) and water-in-oil (w/o)

Phytochemical nanoemulsions

Trans-cinnamaldehyde

Caprylic acid

Eugenol

Development and characterization of Trans-cinnamaldehyde & Caprylic acid nanoemulsions

TCNE & CANE : 4 % Gum Arabic & Lecithin and 1.25 % TC or CA

(Bhargava et al; 2015)

Rationale for using Gum Arabic & Lecithin

(21 CFR 184.1400)

Gum Arabic (21 CFR 184.1330)

(Dammak et al., 2020)

Ultra-fine bubble technology

Ultrafine bubbles technology

- High stability and longevity in solution,
- Ability to penetrate deeply into liquids and interact with surfaces effectively.
- These bubbles can carry gases, such as oxygen or ozone, in high concentrations, enabling various beneficial effects in different applications.

Application of Ultrafine bubbles technology

Production of Ultra-fine ozone bubbles in water.

Farm to fork food safety: Hurdle approach

Challenge area # 1 Reducing colonization of foodborne pathogens in poultry

Major Results

- •Trans-cinnamaldehyde, Eugenol and Caprylic acid nanoemulsions are effective in reducing *Salmonella* **Enteritidis** and *Campylobacter jejuni* colonization in broiler chickens.
- •No change in production parameters.

Future Ideas

- Efficacy of therapeutic supplementation strategies.
- Market age and combination studies.
- Effect on meat quality and taste.
- Research in other poultry-Layer birds, Turkeys.

Challenge area # 2 Reducing persistence of foodborne pathogens in environment

Bacterial biofilms

Organized microbial system associated with surfaces.

Annous et al 2009, Journal of Food Science, 74(1), R24–R37

Upadhyay et al., 2013; Food Microbiology, 36, 79-89

Unosson, E., 2015. Antibacterial strategies for titanium biomaterials (Doctoral dissertation, Acta Universitatis Upsaliensis). Hall-Stoodley, et al., 2004. Bacterial biofilms: from the natural environment to infectious diseases. *Nature reviews microbiology*, 2(2), pp.95-108.

Major Results

Nanoemulsions of Eugenol, Carvacrol, Caprylic acid and Trans-cinnamaldehyde are effective in controlling biofilms of *L. monocytogenes* and S. Enteritidis.

Ultra-fine ozone bubbles are effective in inactivating mature *L. monocytogenes* biofilms.

Frontiers Frontiers in Sustainable Food Systems

TYPE Original Research PUBLISHED 27 October 2023 DOI 10.3389/fsufs.2023.1272373

OPEN ACCESS

EDITED BY Yishan Yang, Agricultural Research Service (USDA), United States

REVIEWED BY

Xinyi Pang, Nanjing University of Finance and Economics, China Xiangwu Nou, United States Department of Agriculture (USDA), United States

*CORRESPONDENCE

Eugenol nanoemulsion reduces Listeria monocytogenes biofilm by modulating motility, quorum sensing, and biofilm architecture

Brindhalakshmi Balasubramanian¹, Jingyi Xue², Yangchao Luo² and Abhinav Upadhyay¹*

¹Department of Animal Science, University of Connecticut, Storrs, CT, United States, ²Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States

Effect of eugenol nanoemulsion on eDNA in *L. monocytogenes* biofilms

Control

Ethanol control

Green – Live cells Red – Dead cells Blue – extracellular DNA (eDNA)

Effect of eugenol nanoemulsion on eDNA in *L. monocytogenes* biofilms

EG 700ppm

Green – Live cells Red – Dead cells Blue – extracellular DNA (eDNA)

Future Ideas

- Develop a natural disinfectant/ foam-based spray for controlling processing plant contamination.
- Understand how exposure to phytochemicals/nanoemulsions affect microbial physiologyin the biofilm matrix.

Challenge area # 3 Reducing post-harvest contamination of food products

Post-harvest control of foodborne pathogens in food products

Cantaloupes

Antimicrobial wash

Lettuce and spinach

Poultry carcass

Eggs

Nanoemulsions of

Trans-cinnamaldehyde, Eugenol, Carvacrol and **Ultrafine ozone bubbles** are effective in reducing *L. monocytogenes*, S. Enteritidis and *E. coli* O157:H7 on fresh produce and poultry products.

Major Results

Poultry Science

Volume 102, Issue 4, April 2023, 102523

Trans-cinnamaldehyde nanoemulsion wash inactivates *Salmonella* Enteritidis on shelled eggs without affecting egg color

J. Allen *, B. Balasubramanian *, K. Rankin *, T. Shah *, A.M. Donoghue [†],

I. Upadhyaya [‡], B. Sartini [∫], Y. Luo [¶], A. Upadhyay * 📯 🖾

Transmission electron microscopy (TEM) images depicting
morphologyof nanoparticles of Tween80 prepared Trans-cinnamaldehyde nanoemulsion (A) or Gum
Arabic and lecithin Trans-cinnamaldehyde nanoemulsion (B).

Effect of *Trans*-cinnamaldehyde nanoemulsion (TCNE) wash on trans-shell migration of *S*. Enteritidis.

Poultry Science

Volume 102, Issue 8, August 2023, 102812

Effect of *trans*-cinnamaldehyde nanoemulsion wash on chicken embryo development in fertilized eggs

No impact on fertility rate by TCNE wash treatments.

TYPE Original Research PUBLISHED 07 September 2022 DOI 10.3389/fsufs.2022.984391

OPEN ACCESS

EDITED BY Hsin-Bai Yin, Agricultural Research Service (USDA), United States

REVIEWED BY

Cangliang Shen, West Virginia University, United States Reha Azizoglu, Akdeniz University, Turkey

*CORRESPONDENCE

Abhinav Upadhyay abhinav.upadhyay@uconn.edu

SPECIALTY SECTION

This article was submitted to Agro-Food Safety, a section of the journal Frontiers in Sustainable Food Systems

RECEIVED 02 July 2022 ACCEPTED 15 August 2022 PUBLISHED 07 September 2022 Eugenol nanoemulsion inactivates *Listeria monocytogenes, Salmonella* Enteritidis, and *Escherichia coli* O157:H7 on cantaloupes without affecting rind color

Brindhalakshmi Balasubramanian¹, Trushenkumar Shah¹, Jodie Allen¹, Kimberly Rankin¹, Jingyi Xue², Yangchao Luo², Richard Mancini¹ and Abhinav Upadhyay^{1*}

¹Department of Animal Science, University of Connecticut, Storrs, CT, United States, ²Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States

Survival of *L. monocytogenes* (log CFU/cm²) on cantaloupe washed with eugenol nanoemulsions during the 5-day storage at 25 (A) and 4°C (B).

B L. monocytogenes at 4°C

C S. Enteritidis at 25°C

Inactivation of *Listeria monocytogenes* on apples, celery and lettuce at 25 or 4°C by UFO bubble wash.

Washed with UFO bubble water for 1,3,5 min at 25 or 4°C.

Spot inoculated with *L. monocytogenes* (200 <u>ul;</u> ~5.5 log CFU/sample).

Effect of UFO bubble wash on color of apples, celery and lettuce during refrigerated storage.

Washed with UFO bubble water for 1,3,5 min at 25 or 4°C.

Enumeration of color of apples, celery or lettuce

HunterLab colorimeter L* - lightness, a* - red/green, b* - blue/yellow Inactivation of *Listeria monocytogenes* on Apples, Celery and Lettuce by UFO bubble wash (5 ppm) at 4C.

(a) Apples

■Baseline ■Control ■Ozonated nanobubbles

UFO wash treatments did not impact produce color.

Inactivation of *Listeria monocytogenes* on Apples, Celery and Lettuce by UFO bubble wash (5 ppm) at 4C.

(b) Celery

■ Baseline ■ Control ■ Ozonated nanobubbles

UFO wash treatments did not impact produce color.

Inactivation of *Listeria monocytogenes* on Apples, Celery and Lettuce by UFO bubble wash (5 ppm) at 4C.

(c) Lettuce

UFO wash treatments did not impact produce color.

Future Ideas

- Application of phytochemical nanoemulsions or UFO bubbles in combination with other intervention technologies for reducing pathogens in food products.
- Organoleptic investigations.
- Studies in industry settings.

S.M.A.R.T. Solutions for Food Safety

S.M.A.R.T. Solutions for Food Safety

Stakeholder-Centered Program: Supporting producers, industry, and regulators.

2

Modern Approaches: Developing user-friendly, economical, organic solutions for food safety and production.

۳**۵**

Advancing Workforce: Training the next generation of academic scholars and industry leaders.

Real-World Applications: Providing solutions for both small and large-scale producers.

Targeting Global Impact: Creating national and international collaborations to drive global change in sustainable food production.

TEAM-Together Everyone Achieves More.

This work was supported by Center for Produce Safety (#2021-44), NE-SARE (#2019-38640-29877) and USDA-NIFA AFRI (# 2020-69006-31684) grant programs.