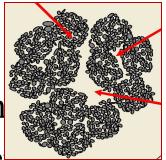
Optimizing Your Site for Strawberries

Site Considerations

- □ Compatible with marketing strategy
- □ Water availability (quality and quantity)
- Adequate soil drainage
- □ Soil fertility, pH and organic matter
- □ Slope
- □ Adequate sun
- □ Winter temperatures/ Frost pockets/ Microclimates
- Prior site history/ Solanaceous crops/ Nematodes
- □ Land for future expansion and crop rotation
- □ PYO parking and customer access

Soil tolerances of berry crops

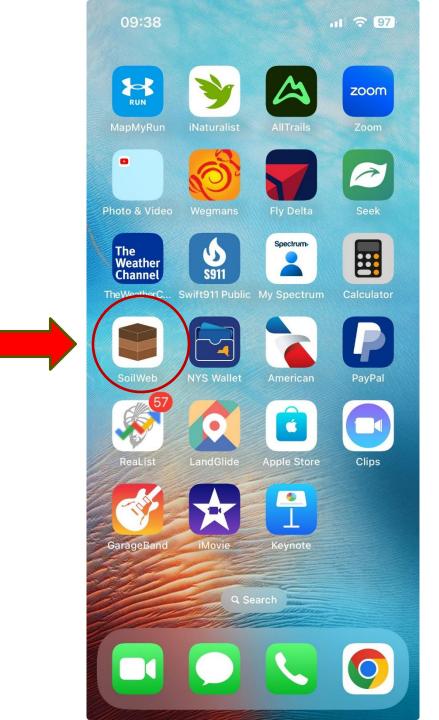
Strawberries	Raspberries	Blueberries
Not too picky about soil texture	Prefer loamy soils	Prefer sandy loam or sandy soils
Soil depth > 6 inches	Soil depth > 12 inches	Soil depth > 12 inches
Internal soil drainage is important	Internal soil drainage is critical	Can tolerate limited flooding, especially in winter
pH between 5.5 and 7.0	pH between 6.0 and 7.0	pH between 4.3 and 4.8
Fairly tolerant of compaction	Fairly tolerant of compaction	Not tolerant of compaction


Soil Types

 Ideal soil for most crops is a deep, well-drained, sandy loam soil high in organic matter.

Why?

Sandy loams


- □ Mixture of pore sizes
 - Allows for root penetration
 - Allows for drainage and aeration
 - Holds some plant-available water

Clays have too much very small pore space, so hold little air and plant-available waterSands have too much large pore space, so hold little water

□ How do I discover my soil type?

□ <u>http://websoilsurvey.nrcs.usda.gov/</u>

How do I discover my soil type?

Search			8	Carl Soil Map
Map Unit L	agond		0 0	
мар опіс с	agenu		~ ⑦	
Tompking	County, New Yorl		 ®	
Map Unit	Map Unit Name	Acres in	Percent of	
Symbol CfB	Conesus gravelly silt loam, 3 to 8 percent slopes	AOI 14.8	AOI 41.6%	
Em	Eel silt loam	1.0	2.9%	
KnA	Kendaia and Lyons silt loams, O to 3 percent slopes	8.3	23.3%	KinA RA
LbB	Lansing gravelly silt loam, 3 to 8 percent slopes	2.9	8.2%	
PaC	Palmyra gravelly loam, 5 to 15 percent simple slopes	1.1	3.0%	A A A A A A A A A A A A A A A A A A A
RkA	Rhinebeck silt loam, 0 to 2 percent slopes	3.3	9.4%	The second se
Ws	Wayland and Sloan silt loams	4.2	11.6%	Cad Goings Rd
Totals for A	rea of Interest	35.7	100.0%	
				Warning: Soil Map may not be valid at this scale. You have zoomed in beyond the scale at which the soil map for this area is intended to be used is done at a particular scale. The soil surveys that comprise your AOI were mapped at 1:20,000 map units and the level of detail shown in the resulting soil map are dependent on that map sca

http://en-us.www.mozilla.com/en-US/firefox/central/

oft Outl... 😫 2 Reminders

Site preparation

- □ Weed suppression (while minimizing compaction)
- Drainage
- □ Ensure water availability
- Soil testing and modification
 - pH modification
 - Nutrient addition
 - Organic matter enhancement
 - Physical properties
 - Biological properties

Weed suppression strategies

- Round-up then cover crop the year before planting
- Sequential cover cropping one year or two before planting
- Follow corn or soybeans or some other crop where weed control was practiced
- Plastic mulch
- Plant strawberries then deal with the weeds later

The most important site modification you can do is ensure there is adequate drainage . . .

Field Symptoms

- Above ground structure stunted, reddened or collapsing
 Wilting of leaves
 Lack of runnering
- Decline of vigor and productivity

Symptoms of poor soil health from inadequate drainage

- Patchy-complete
 blackening of
 main/perennial roots
- Deterioration of
 perennial & feeder
 roots
- **Smaller root systems**

Black root rot

Red Stele

Not all farms have deep, well-drained, sandy loam soils ...

• What is the tolerance of strawberries to variation in soils?

Preplant treatments had an impact on runner production and yield in the first fruiting year.

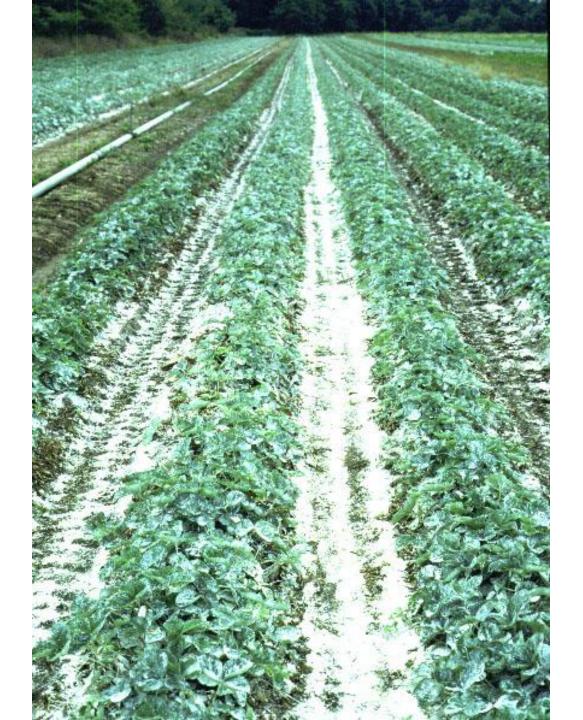
Treatment	Daughter plants* (#/m)	Yield* (kg/4 m)	Individual fruit weight (g)
Minimum	44.0	7.83	12.0
Moderate	31.0	7.73	12.2
Maximum	28.6	7.19	12.1

A similar trend was continued into the subsequent year but the impact was not large (<10%).

Treatment	Yield* (kg/4 m)	Individual fruit weight* (g)
Minimum	22.0	13.9
Moderate	21.2	12.4
Maximum	20.3	12.7

Principles of chemical soil testing

□ Soil test prior to planting


- Adjust pH
- Adjust nutrient levels
- □ Leaf analysis once planting is established
 - Mid-summer

Traditional Soil Tests

- Determine optimal nutrient level for crop maximum yield/growth for the
- Use chemical soil test result to determine what is available to the plant from the soil
- Provide fertilizer
 recommendation to supply the difference via. fertilizer

Soil pH and Nutrient Availability

pH 4.0 4.5 5.0 5.5 6.0 Strongly Acid	6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 Neutral Strongly Alkaline
	NITROGEN
	POTASSIUM
	PHOSPHORUS
	SULFUR
	CALCIUM
	MAGNESIUM
	IRON
	MANGANESE
	BORON
	COPPER & ZINC

Note on soil testing:

- Extractants differ between labs
- Recommendations must match the soil extractant

What organic amendments are best?

- □ Four preplant amendments
 - Straw
 - Wood chips
 - Grass clippings
 - Control
- □ Two tillage depths
- Measuring growth, yield, PMN, active C, respiration

Unamended

Straw

Sawdust

Plants planted into a straw residue were smaller, slower to establish, and had fewer runners and a lower yield the following year.

 Straw mulch incorporated between rows once plants are established (as would be typically done during renovation) did not impact yield the following year.

How do we evaluate soil potential?

Chemical tests (Traditional soil tests)

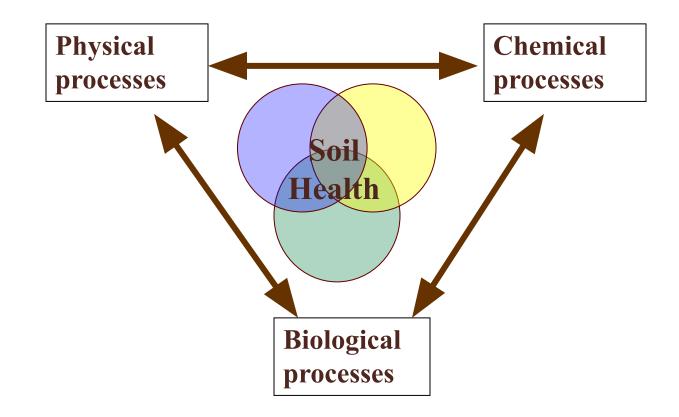
• Soil tests, fertilizers, etc.

Physical tests

Tilth

 \square

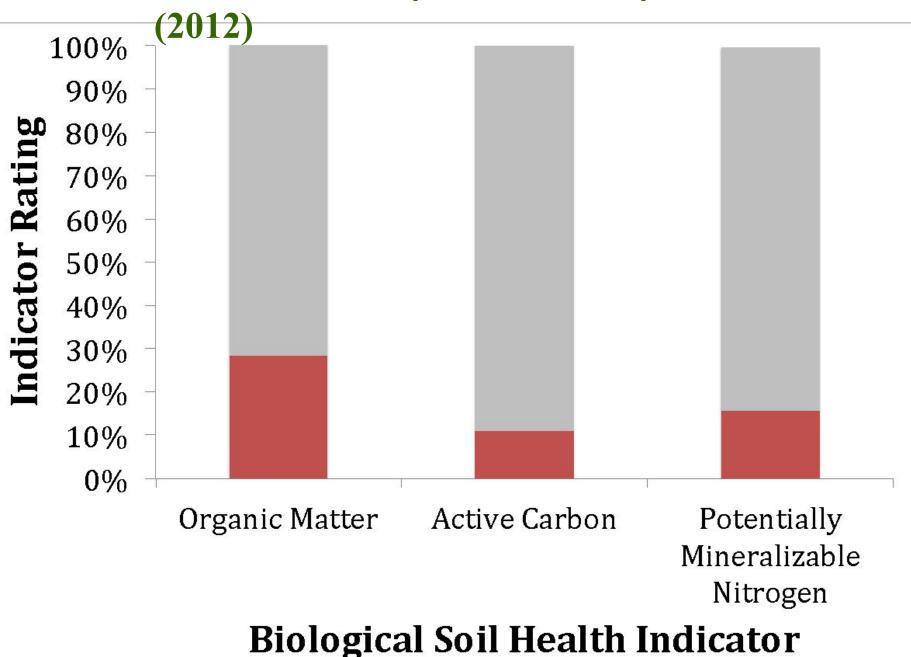
- Drainage
- Compaction


Biological tests

- The living component of soil
- Not yet as well-understood, but can be managed!

Biological and physical tests are available through the Cornell Soil Health Test

Interactions!


Cornell Soil Health Test

- Publically available since 2006, developed for the northeastern USA
- 2) Measures 15 indicators
 - a. Represent agronomically essential soil processes
 - b. \$90/sample
- 3) Identifies soil constraints using scoring functions
- 4) Guides management decisions

http://soilhealth.cals.cornell.edu/

CORNELL SOIL HEALTH TEST REPORT (COMPREHENSIVE)			
Name of Farmer: Beth Gugino			Sample ID: E231
Location: Plant Pathology, 630 W. North St. Geneva NY 14456			Agent: George Abawi
Field/Treatment: Gates 72			Agent's Email: 0
Tillage: 9+ INCHES			Given Soil Texture: LOAMY
Crops Grown: CLE/SWC/BNS			Date Sampled: 5/4/2007
Indicators	Value	Rating	Constraint
Aggregate Stability (%)	26	32	
Available Water Capacity (m/m Surface Hardness (psi)	0.13	29	water retention
AHA Surface Hardness (psi)	167	53	
Subsurface Hardness (psi)	300	46	
Organic Matter (%)	2.3	18	energy storage, C sequestration, water retention
Active Carbon (ppm) [Permanganate Oxidizable] Potentially Mineralizable Nitrogen (µgN/ gdwsoil/week)	554	38	
Potentially Mineralizable Nitrogen (µgN/ gdwsoil/week)	7.9	10	N Supply Capacity
Root Health Rating (1-9)	4.3	63	
*pH	7.4	78	
*Extractable Phosphorus (ppm) [Value <3.5 or >21.5 are downscored] *Extractable Potassium (ppm)	10.0	100	
HO *Extractable Potassium (ppm)	50	72	
*Minor Elements		100	
OVERALL QUALITY SCORE (OUT OF 100):		53.3	Low
Measured Soil Textural Class:==> silt loam SAND (%): 44.0 SILT (%): 50.0 CLAY (%): 6.0			
Location (GPS): Latitude=> 42.866667 Longitude=> -77.05			

NE SARE survey of strawberry farms

Comprehensive Assessment of Soil Health

The Cornell Framework

- Overview of Soil Health concepts
- □ Field sampling
- Description of indicators
- Brief laboratory methodology
- How indicator values are "scored"
- □ Soil Health Report
- Soil Health Report Interpretation
- Linkages to Management

Available online at http://soilhealth.cals.cornell.edu

A good water supply is essential for long-term sustainability

Why worry about water?

- 2/3 of world's fresh water is used for agriculture
- Water quality is poor in many areas (e.g. high salinity, high pH)
- even humid areas (like the Northeast)
 experience a 20 30 day period without significant rainfall during the growing season 3 times per 20 years

Short-term effects of water stress on berries . . .

- reduces net assimilation rate
 (photosynthesis) by 50%
- □ reduces leaf expansion rate and leaf area
- □ increases rate of leaf death
- □ accelerated ripening

Long-term effects of water stress on berries . . .

- □ reduced growth of aboveground tissues
- reduced flower bud initiation
- □ smaller fruit size
- \Box reduced yield

Consequence of too little water after planting

Water supply considerations

- □ Frequency of irrigation
- Replenishment rate
- □ Efficiency of irrigation (60-75% for overhead)
 - To supply 0.6 inches or water with an overhead system requires 27,000 gal. X 0.6 in. /0.75 = 21,600 gal per acre.
 - Twice a week irrigation during the drought
 - For a 5-acre planting during a 30-day drought, this would lower a pond 100 ft. by 100 ft. by 2.5 feet.

□ Water quality

- salts/pH < 2.0 ms
- microorganisms
- sediment/algae

Site preparation

- ✓ Weed suppression
- Drainage
- Ensure water availability
- \checkmark Soil testing and modification
 - pH modification
 - Nutrient addition
 - Organic matter enhancement
 - Physical properties
 - Biological properties

