"Low hanging fruit": How Nutrient Management Can Improve Organic Tomato Production In High Tunnels

Becky Maden, UVM Extension

NEVFC

December 19, 2024

Today's talk:

- There is not a lot of great guidance on tunnel fertility -- not greenhouses, not field. Important to understand defining characteristics.
- Big nutrient demand in tunnel crops; align nutrient management with crop needs and target yields.
- Organic amendments work well. Pay special attention to N and K.
- I Track yields to learn what works!

. . . .

Tunnels have high yield and revenue potential

1.1.1.1.1

- B-12 times yield per squarefoot in tunnel vs. field
- Ripen ~1 month earlierthan field
- Lower risk of climaterelated losses

.

and the state

There are many different tunnel shapes, sizes, and systems. There is no one size fits all approach for tunnel recommendations.

4 1 1 4

.

A Contract of the second

Growth potential in tunnels should guide nutrient recommendations plan for optimal yield, then identify limiting factors

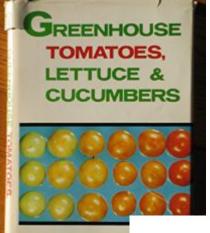
1.1.1.1.

- □ Size of tunnel?
- Heat? Ventilation?
- Market / harvest window?
- What type/variety of tomato?

a la stand a la la la

Duration of plants in the soil?

Plant density and biomass accumulation drive tomato nutrient uptake


- Tunnels have high plant density
 - tunnel: 5,000-10,000 plants per acre
 - field: 2,400-3,200 plants per acre
- High yielding varieties (often grafted onto vigorous rootstocks)
- A lot of high nutrient biomass is pruned off
- Extended season—plants are growing for 30-90% more time (& absorbing more nutrients)

.

and the fact of the

Greenhouse tomato recommendations provide adequate benchmarks for tunnel systems

S.H.Wittwers S.E.

Table 2.

Recommended fertilizer rates (part per million) for tomatoes cropped in peat-lite and rockwool systems.

			Peat-l	lite Ba	gs		
Stageof Development			(P	pm)			
	N	• P	K	Ca	Mg	Fe	B
Planting to	150-200	50	225-300	80	30	3	0.5
1st cluster 1 st to 4 th cluster	200-225	50	300-340	80	30	3-5	0.5
4 th to finish	225-300	50	340-500	80	30	3-10	0.5

. . . .

But controlled growing environments and hydroponic systems do not have the same soil - nutrient dynamics

Photo credits: Cheryl Frank Sullivan, UVM

Tunnel soils develop different properties than field soils

- No rain + high nutrient inputs => salt buildup
- Warmer drier soils => accelerated mineralization
- Lots of compost =>highly buffered soil
- Limited cover cropping or crop rotation

Without informed nutrient management, some tunnel soil trends become difficult to reverse

High inputs of compost, sometimes without soil testing.

- High/ imbalanced nutrients, especially P
- Dry soil, altered microbe activity
- Soil pH increases

see Numerical Result	Level	INTERPRETATION on for more information)	1		ABO
	Found	LOW	MEDIUM	OPTIMUM	OPTI
Soil pH	7.1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX
Organic Matter(%) 15.5	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX
Nitrate-N (ppm)	107	XXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	X	
Phosphorus (15/A)	1495	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
Potassium (1b/A)	1134	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			XXXXXX
Calcium (% Sat)	78.4	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			XXXXXX
Magnesium (% Sat)	14.3	xxxxxxxxxxxxxxxxxxxxx		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
Sulfur (ppm)	201	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000		XXXXXX
Boron (ppm)	2.5	xxxxxxxxxxxxxxxxxxxxxxx	xxxxxxxxxxxxxxxxx	000000000000000000000000000000000000000	CXXXXX
Copper (ppm)	0.60	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXX		
Iron (ppm)	7.1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX	
Manganese (ppm)	19	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	xxxxxx
Zinc (ppm)	20	xxxxxxxxxxxxxxxxxxxxxxxx	000000000000000000000000000000000000000	000000000000000000000000000000000000000	XXXXXX

Tunnel tomatoes have heavy nutrient demands to achieve yield potential

In organic systems, compost alone can't meet crop needs. Bagged amendments are critical to optimal yield.

'Field' soil tests alone do not provide good guidance for tunnels

□ Some nutrient levels appear off the charts; recommendations are low.

□ Field soil tests do not typically include soluble salts, nitrate-N, ammonium-N.

Lov	N	Medium Optimu	um I	High or Excessive
	Phosphorus	is excessive!!!		
Value Found	Optimum Range (or Average *)	, ** Analysis	Value Found	Optimum Range ** (or Average *)
7.7		Boron (B)	1.	0 0.3*
lle, ppm		Copper (Cu)	0.	6 0.3*
220 4		Zinc (Zn)	2.	5 2.0*
		Sodium (Na)	528.	0 20*
		Aluminum (Al)	5	3 35*
5185	**	Soil Organic Matter %	6.	2 **
473	50-100	Effective CEC, meg/100g	30.	0 **
807.0	11*	·	**************	
		Calcium Saturation	86.	5 40-80
3.1	7.0*	Potassium Saturation	0.	4 2.0-7.0
9.2	8.0*	Magnesium Saturation		
	Value Found 7.7 ble, ppm 220.4 46 5185 473 807.0 3.1	Value Optimum Range Found (or Average *) 7.7	Phosphorus is excessive!!! Value Optimum Range ** Found (or Average *) Analysis 7.7 Boron (B) 0 Copper (Cu) 220.4 4-7 46 100-130 5185 ** 473 50-100 807.0 11* 3.1 7.0*	Phosphorus is excessive!!! Value Optimum Range ** Found (or Average *) Value Found 7.7 Boron (B) 1. 10, ppm Copper (Cu) 0. 220.4 4-7 Sodium (Na) 528. 46 100-130 Sodium (Na) 528. 473 50-100 Soil Organic Matter % 6. 807.0 11* Soil Organic Matter % 6. 3.1 7.0* Potassium Saturation 86.

Use different tests for different information

- Field soil test for reserve nutrients (modified Morgan, Brays, Melich-3)
 Potting soil test for soluble nutrients (Saturated Media Extract)
 Tissue analysis for nutrient levels in plants (concentration of
 - elements in dry leaves)

Together, these tests guide tunnel nutrient management

Tunnel tomatoes need nutrients *now* (soluble) and nutrients *later* (reserve).

.

S. S. S. Cast 1.

It is hard to guess what plants need.

Combination of saturated media tests, field soil test, and tissue tests can provide answers

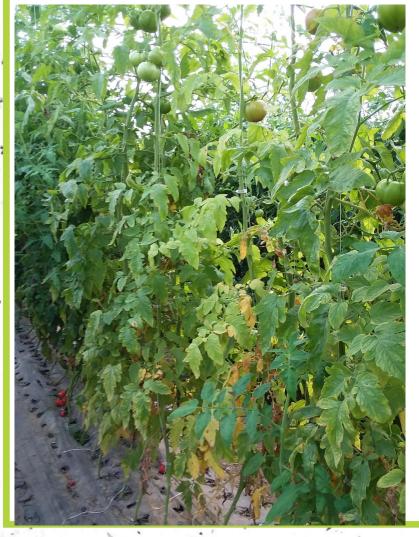
UMaine offers combined soil tests for high tunnels: field soil tests (reserve nutrients) + saturated media (soluble nutrients)

	•SOIL TEST REPORT FOR: MAINE SOIL TESTING SERVICE ERS UNIVERSITY OF MAINE 13 63 5722 DEERING HALL ORONO,MAINE 04469-5722
	• SOIL TEST SUMMARY & INTERPRETATION isse Rumerical Results section for more information Found LOW MEDIUM OPTIMUM OPTIMUM Soil pH 6.1 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Field soil test (reserve nutrients)	 Magnesium level is sufficient. Use a calcitic (low magnesium) lime. To meet major nutrient requirements, Apply on every 1000 sq. ft.: Nitrogen(5.8 lb) - from 48 lb bloodmeal or 83 lb soybean meal Phosphorus(1.6 lb) - from 10 lb bonemeal/bonechar or 53 lb rock phosphate. Potassium(19.2 lb) - from 37 lb potassium sulfate N-P-K recommendations are for heavier feeding crops, such as Tomatoes, Peppers, & Vines. 1/2 the recommended rates should be sufficient for Greens, Cut Flowers, and Fruit crops. Tomatoes: Recommendations are based on 60 ton/A (3 lb/sq ft) yield goal. 15 bushel cow, pig, or horse manure or 7-8 bushel poultry, sheep, goat, or rabbit manure/1000 sq. ft. can substitute for 1/4 recommended nutrients (apply in fall). Broadcast lime uniformly, in spring or fall, and till in 6-7 in. Till in manure or compost to improve soil organic matter content. If you use manure or compost, reduce any additional phosphate application by 50%.
	For information on micronutrient management and recommendations, see enclosed form.IDENTIFY TO INTRODUCTION OF THE STATE

		INE			
Analysis date: 03/20/	2020			Job	# 379
Sample Name: HHT					
Crop Grown: Tomato					
Comments: 1027	Nu s lashi sa	1 Decevit			
Determination	Analytica Optimum Range	Level Me	_	Relative Lev	a 1
pH	6.0 - 7.0	6.1	asureu	OPTIMUM	<u> </u>
-					Saturated
Soluble Salts	2.0 - 4.0 mmhos/cm	2.44	mmhos/cm	OK	Saturated
Organic Matter	8 - 12 %	7.9	8	LOW	media
Nitrate-N	100 - 200 ppm	31.7	ppm	LOW	(soluble
Ammonium-N	< 10 ppm	0.5	ppm	OK	nutrients)
Phosphorus	1 - 5 ppm	0.3	ppm	LOW	
Potassium	150 - 275 ppm	8	ppm	LOW	
Magnesium	> 60 ppm	107	ppm	OPTIMUM	
Calcium	> 250 ppm	444	ppm	OPTIMUM	
Aluminum	< 10 ppm	0.2	ppm	OK	
Boron	0.05 - 0.50 ppm	0.62	ppm	HIGH	
Copper	0.01 - 0.5 ppm	0.013	ppm	OPTIMUM	
Iron	0.3 - 5.0 ppm	0.04	ppm	LOW	
Manganese	0.1 - 3.0 ppm	0.24	ppm	OPTIMUM	
Sodium	< 100 ppm	163	ppm	HIGH	
Sulfur	25 - 100 ppm	491	ppm	HIGH	
Zinc	0.3 - 3.0 ppm	0.08	ppm	LOW	

Note: Results are expressed as concentration in saturated media water extract, measuring the short-term intensity of nutrient availability in your soil.

2018 New England High Tunnel Tomato Survey Revised nitrogen recommendations are based on yield potential


N application rate based on yield goal							
	Yield goal lb/acre	=Yield lb/ft ²	=Yield lb/stem = lb/4 ft ²	Approx. plant height	N need Ib/acre @ 90% recovery	N need* lb/1,000 ft ²	
Low yield	40,000	1	4	8'	100	2.3	
Medium yield	80,000	2	8	12'	200	4.6	
Good yield	120,000	3	12	16'	300	6.9	
High yield	160,000	4	16	20'	<mark>400</mark>	9.2	
^t Subtract N credit for each 1% soil organic matter of .25 lb/1,000 ft ² , up to 1 lb.							

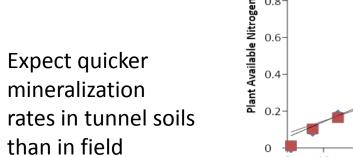
We have been collecting data on these recommendations since 2020, finding that most tunnel growers fall in the "medium" to "good" category.

1 State 1 1

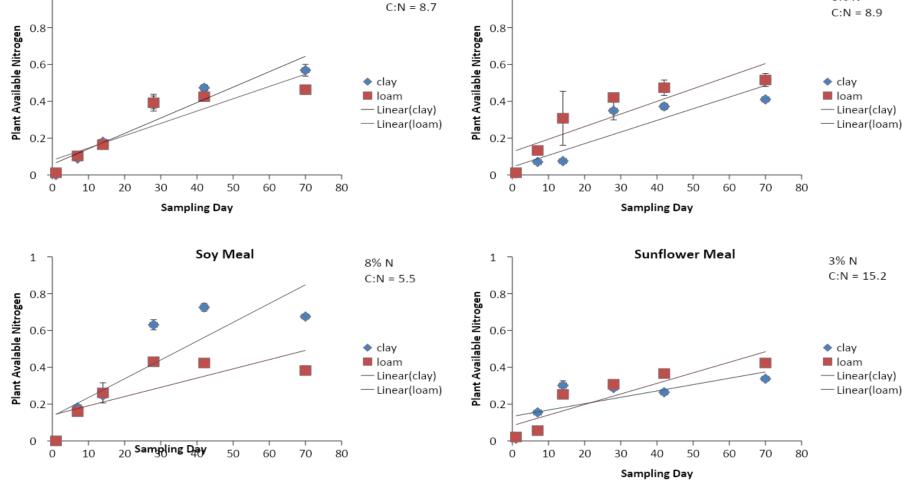
Split applications of N balance vegetative growth with sustained plant needs

1.11

- □ 1/2 to 2/3 N before planting
 - Amend 2 weeks before planting, mix well in warm, moist soil


.

- Follow soil test recommendation rates
- Amend full rates of P, K, Mg, Ca, and other nutrients


Most organic N sources– slow steady release over growing season, with only 60-75% of total N available year 1

6% N

Canola Meal

1

1

1 Same Call

6% N

Mustard Meal

Potassium rates for tunnel tomatoes are 2-3 times field recommendations

Sec.

. . . .

a la star in the

K	² 0 applic	ation r	ate bas	ed on N	lodified	Morg	an's soi	test
	<400	ow lb./A = ppm K	400-80	dium 0 lb./A = 0 ppm K	High/optimum Excessi 800-1200 lb./А = > 1200 lb 400-600 ppm К > 600 pp			0 lb./A =
	lbs/acre	lbs/ 1000 ft ²	lbs/acre	lbs/ 1000 ft ²	lbs/acre	lbs/ 1000 ft ²	lbs/acre	lbs/ 1000 ft ²
Low yield	300	6.9	200	4.6	100	2.2	0	0
Med vield	450	10.3	300	6.9	150	3.4	0	0
Good yield	600	13.8	400	9.2	200	4.6	0	0
High	750	17.2	600	13.8	300	6.9	0	0

4 1 N 1

1.1

Nutrients affect quality not just yield

Potassium is very important for fruit marketability

Spread "front loaded" soil amendments evenly!

Many tunnels have lower yields in areas by sidewalls due to lower fertility, colder soil, other...?

Compost cannot meet the nutrient needs of tunnel tomatoes: know your organic fertilizer options

N: soy, peanut, feather meal; Chilean (sidedress), "meat" meals (e.g. Naturesafe 13-0-0)

P: bone meal, bone char, rock phosphate

K: potassium sulfate, sul-po-mag, greensand

Ca: lime, gypsum

Mg: dolomitic lime, sul-po-mag, epsom salts

Blends: ProGro, Cheep-Cheep, Kreher's, etc.

Micros: compost, borax, Azomite, chelates

Organic matter: compost, peat moss, leaves, wood chips, etc.

To add potassium, soluble "fines" (0-0-50) dissolve in water and are quickly available to plants

1. 1. 1. 1. L.

If soil test calls for magnesium, sul-po-mag (0-0-22 11 Mg) is a good choice

Strate State

If soil test calls for phosphorus, bone char is a quickly available organic option.

1. 1. 1. 1. L. L.

Compost builds up P reserves

A Break Star

Epsom Salts for Mg

4

Ø Plant Nutrient

For vigorous lawns, flowers, plants, vegetables and trees

NET WT 6 LBS (2kg)

Gypsum adds calcium, doesn't change soil pH

Nutrient deficiencies appear in mature plants, indicating insufficient levels of uptake

4.1

and in the second

Leaf tissue analysis measures what the plants took up

Begin 1 month after transplant, sample monthly.

 Tissue analysis can alert you to deficiencies before they are visually apparent.

 It is important to correct deficiencies before fruit forms!

Using tissue sample results to adjust mid season fertility

120

	Low	Normal	High	Excessive
Nitrogen (% DW)	2.50	3.75	4.25	5.50
Phosphorus (% DW)	0.20	0.30	0.52	0.60
Potassium (% DW)	1.50	2.30	4.10	5.00
Calcium (% DW)	0.20	1.00	4.75	6.50
Magnesium (% DW)	0.20	0.55	1.00	1.25
Sulfur (% DW)	0.20	0.30	1.21	3.00
Manganese (ppm DW)	20	30	100	500
Iron (ppm DW)	25	40	100	450
Copper (ppm DW)	6	10	20	35
Boron (ppm DW)	15	25	45	90
Zinc (ppm DW)	20	25	71	72

More N and K during vegetative growth; less when fruiting

and the second second

Source:

https://agsci.psu.edu/aasl/plant-analysis/plant-tissue-total-analysis/interpretive-nutrient-levels

'Fertigation' can quickly correct for deficiencies

1.1.1.1.1

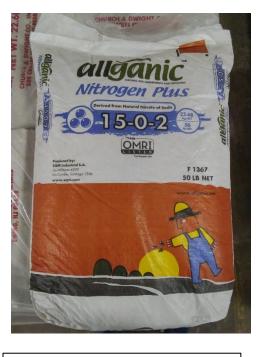
.

Mazzei Venturi injectors simple and inexpensive

Content X

- Dosatron more precise; good for high volumes
- Begin N and K weekly 4-6 weeks after planting
- 0.25 lb/ 1000 sq feet/ week of both N and K20

Not many options available for organic fertigation

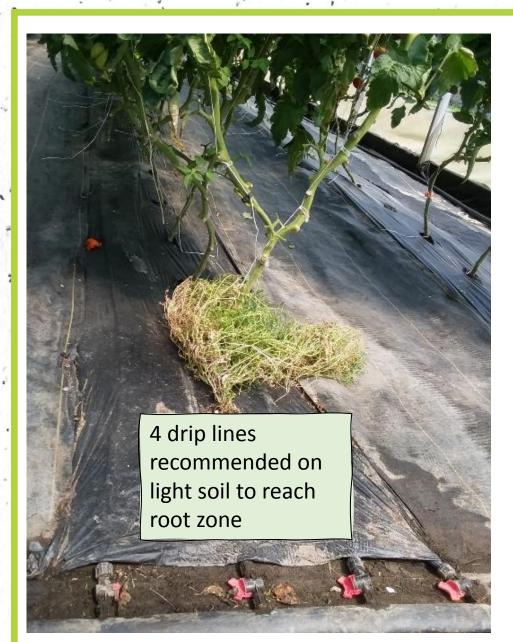

ta the start

and the second second

Fish emulsion 2-4-1

Sodium nitrate 15-0-2 dissolves and can go through drip

"fines" dissolve and are


more available

1. 1.

NutriAg's Enviro Products

Any other suggestions?

Without adequate water, plants can't take up nutrients

4.1 (4)

Salts build up can take time to remediate

- □ Mix soil regularly with tillage
- Use transplants in high salt soils
- When possible, use overhead irrigation
- When changing plastic, let
 rain flush the soil

A set of the set of

Setting yield goals is important to guide nutrient management

- Use previous yield data to set goals
- Set realistic expectations based on variety, planting date, labor, and infrastructure
- Track yield weekly
- Record pruning practices and environmental factors that affect yield

A CAR LA

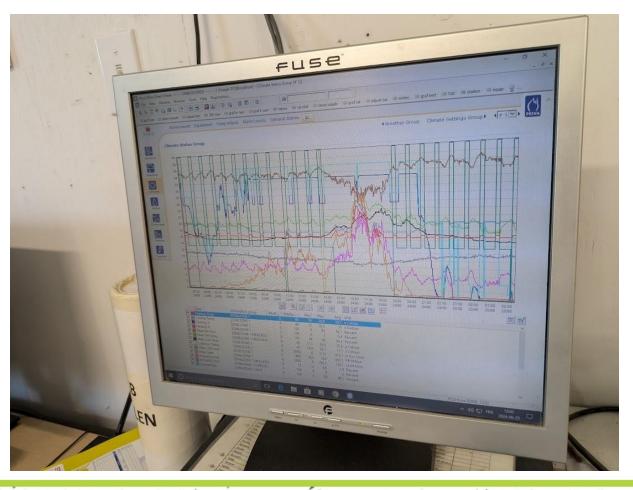
Reducing abiotic stresses is also critical to good production

Many factors besides nutrients can be a limitation on fruit quality

What factors do tunnel growers have control over?

4 1 A 1

.



·

a start of the

There is a lot of automation available to improve greenhouse management, but most of it is out of reach for tunnel growers

Conclusion: focusing on nutrient management improves tunnel yields

 Growers report increased yield and quality following recommendations.

4 1 14

- Low cost steps □ big improvements
- Be proactive with tissue testing and fertigation
- Many factors drive tomato
 yields—levelling up nutrients is an easy
 path to quick results
- What are the other limitations on yield?? Next up!

.

a la la la la la la la

Thank you! Rebecca.maden@uvm.edu

\$ 1 . is

