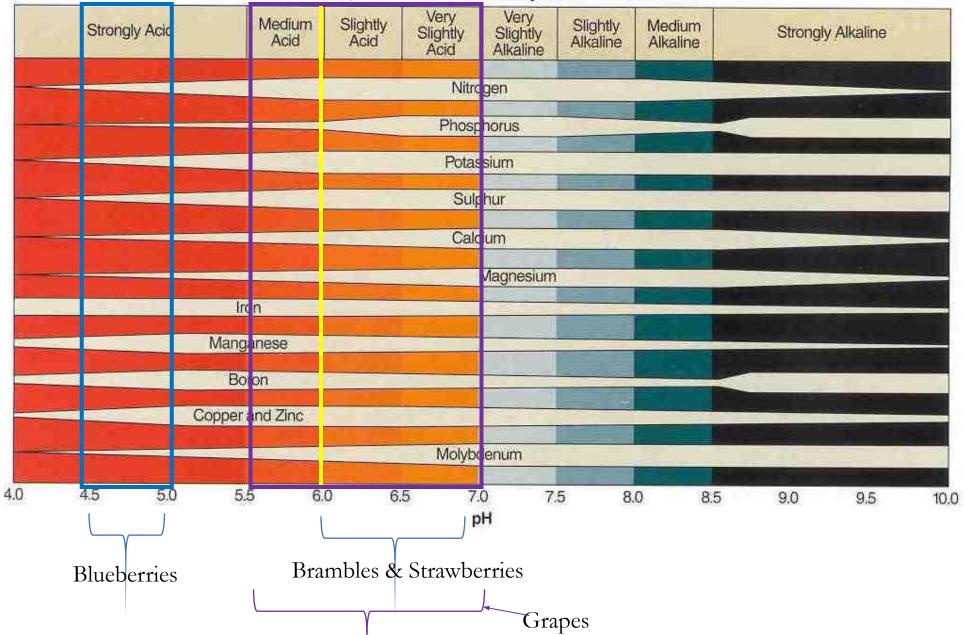
Fine Tuning Fertilizer Applications for Small Fruit

Mary Concklin Extension Educator Emerita Fruit Production & IPM


UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

PLANT SCIENCE AND LANDSCAPE ARCHITECTURE

Developing fertilizer programs takes into account:

- Soil pH & nutrient levels
- Tissue analysis
- Existing mineral nutrients in the soil
- Available water
- Ground management
- Climatic conditions

How Soil pH Affects Availability of Plant Nutrients

Using visual symptoms Understanding nutrient mobility

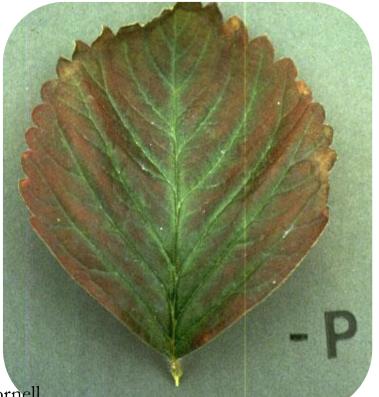


Photo: Marvin Pritts, Cornell

University of Connecticut Department of Plant Science

Soil Nutrient Analysis Laboratory, 6 Sherman Place, Box U-102, Storrs, CT 06269-5102, Phone : 860-486-4274, Fax : 860-486-4562.

GROWER'S ADDRESS	SAMPLE ID		
	BLUEBERRIES		
	LAB ID RECEIVED REPORTED		
	6455 09/02/09 09/09/09		
	SALES AGENT		

NUTRIENTS EXTRACTED FROM YOUR SOIL (MODIFIED MORGAN EXTRACTABLE)

		-	BELOW OPTIMUM	OPTIMUM	ABOVE OPTIMUM
pH	6.4	ŧ			
Calcium	3781	lbs/acre	*****	*******	*****
Magnesium	>500	lbs/acre	*****	*******	******
Phosphorus	26	lbs/acre	* * * * * * * * * * * * * * * * * * * *	******	***
Potassium	88	lbs/acre	* * * * * * * * * *		

Element	ppm	Soil Range
Boron (B)	0.20	0.1-2.0
Copper (Cu)	0.10	0.3-8.0
Iron (Fe)	3.60	1.0-40.0
Manganese (Mn)	1.40	3.0-20.0
Zinc (Zn)	0.90	0.1-70.0
Aluminum (Al)	32	10-300

Estimated Total Lead: Low, typical background levels

Amount of Sulfur in Pounds per Acre Required to Lower Soil pH

Present pH of soil	Desired pH Value of 4.5		
	Sand	Loam	Clay
4.5	0.0	0.0	0.0
5.0	174	522	609
5.5	284	1054	1132
6.0	522	1524	1612
6.5	653	2003	2090
7.0	827	2526	2613
7.5	1001	3005	3093

University of Connecticut Department of Plant Science

Soil Nutrient Analysis Laboratory, 6 Sherman Place, Box U-102, Storrs, CT 06269-5102, Phone : 860-486-4274, Fax : 860-486-4562.

GROWER'S ADDRESS		SAMPLE ID	
		RASP 1	
	LAB ID	RECEIVED	REPORTED
	3936	04/23/12	05/01/12
		SALES AGEN	r ·
	2		

NUTRIENTS EXTRACTED FROM YOUR SOIL (MODIFIED MORGAN EXTRACTABLE)

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		BELOW OPTIMUM OPTIMUM ABOVE OPTIMUM
pН	6.9	
Calcium	>4000 lbs/acre	***************************************
Magnesium	472 lbs/acre	***************
Phosphorus	73 lbs/acre	******************
Potassium	>600 lbs/acre	***************************************

University of Connecticut Department of Plant Science

Soil Nutrient Analysis Laboratory, 6 Sherman Place, Box U-102, Storrs, CT 06269-5102, Phone : 860-486-4274, Fax : 860-486-4562.

GROWER'S ADDRESS	SAMPLE ID
	FLD3: 19.STRAWBERRY
	LAB ID RECEIVED REPORTE
e*	1380 04/04/13 04/08/13
, ·	SALES AGENT
	DAVE POSTEMSKI

NUTRIENTS EXTRACTED FROM YOUR SOIL (MODIFIED MORGAN EXTRACTABLE)

			BELOW OPTIMUM OPTIMUM ABOVE OPTIMUM
pH	5.8		
Calcium	1570 lb	s/acre	* * * * * * * * * * * * * * * * * * * *
Magnesium	201 lb	s/acre	* * * * * * * * * * * * * * * * * * * *
Phosphorus	1 lb	s/acre	***
Potassium	178 lb	s/acre	* * * * * * * * * * * * * * * * * * * *

LIMESTONE: The target pH for strawberries is 6.3. Apply 1175 lbs. of ground limestone per acre. Thoroughly incorporate the recommended amount of limestone into the upper 6 to 8 inches of soil.

Nutrient in excess	Induced deficiency
Nitrogen	Potassium

Nutrient in excess	Induced deficiency
Nitrogen	Potassium
Potassium	Nitrogen, Calcium, Magnesium

Nutrient in excess	Induced deficiency
Nitrogen	Potassium
Potassium	Nitrogen, Calcium, Magnesium
Phosphorus	Potassium, Copper
Sodium	Potassium, Calcium, Magnesium
Calcium	Magnesium, Boron
Magnesium	Calcium, Potassium
Iron	Manganese
Manganese	Iron
Copper	Iron

• Available water

Ground managementCompaction

Ground management
 Allow vegetation to grow

• Ground management -Mulch

• Ground management -Clean strip

• Ground management - Plastic/ landscape fabric

Climatic conditions

-Moisture

-Heat

Photo: Marvin Pritts, Cornell

Soil microbial activity

Soil Testing

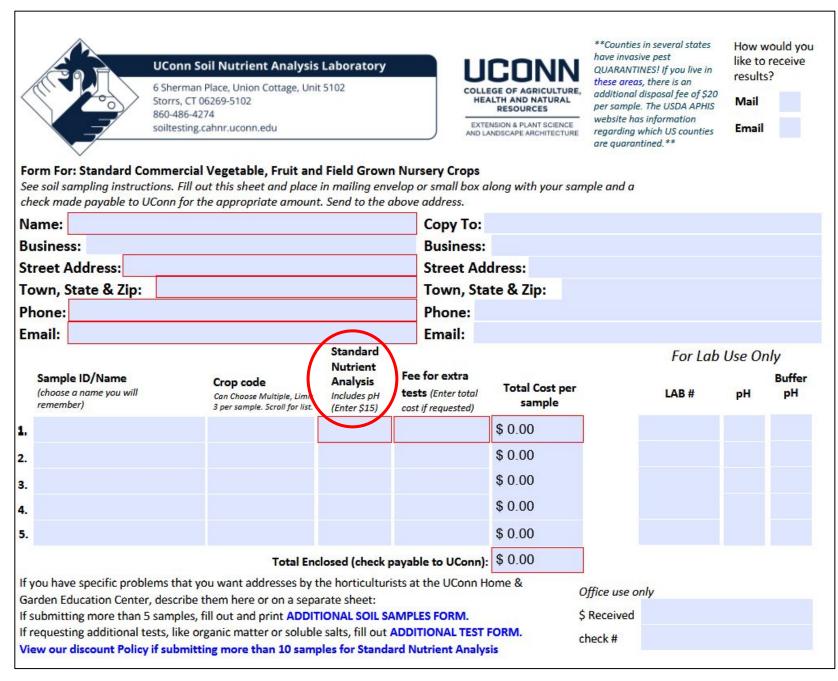
- Use same lab
- Will vary based on:
 - -Topography
 - -Cultivation practices
 - -Time of year sampling

Manganese (Mn)

Zinc (Zn) Aluminum (A) 2.60 3.0-20.0 2.40 0.1-70.0

29 10-300

University of Connecticut Department of Plant Science


Soil Nutrient Analysis Laboratory, 6 Sherman Place, Box U-102, Storrs, CT 06269-5102,

NUTRIENTS EXTRACTED FROM YOUR SOIL (MODIFIED MORGAN EXTRACTABLE)

	the second second second second	BELOW OPTIMUM	OPTIMUM	ABOVE OPTIMUM
pН	6.5			
Calcium	2456 lbs/acre	*******	*******	ĸ
Magnesium	383 lbs/acre	* * * * * * * * * * * * * * * * * * * *	*******	******
Phosphorus	30 lbs/acre	*****	*******	*****
Potassium	113 lbs/acre	* * * * * * * * * * * *		
Element	ppm Soil Ran	ge		
Boron (B)	0.20 0.1-2.0	Estimated Total Lead: Low,	typical back	ground levels
Copper (Cu)	0.20 0.3-8.0			
Iron (Fe)	2.70 1.0-40.0			

LIME AND FERTILIZER RECOMMENDATIONS

- Prior applications of fertilizers, compostPesticides influence?
- Pre-plant and throughout planting lifespan
- Compost testing

Add \$7 for organic

matter

PLANT ANALYSIS RESULTS

Client:	Mary Concklin
	PSLA
	WB Young
	Storrs, CT 06269
	mary.concklin@uconn.edu

Date Received: 7-27-2018 Date Processed: 8-20-2018

Crop: Blueberries

Sample ID: T18-129

Copy to:

Lab ID: 18023 blueberry

Plant Nutrient	Sample Results	Sufficiency Range
Nitrogen (N) % Dry Weight	1.94	1.7 - 2.1
Phosphorus (P) % Dry Weight	0.13	0.10-0.40
Potassium (K) % Dry Weight	0.52	0.40-0.65
Calcium (Ca) % Dry Weight	0.56	0.30-0.80
Magnesium (Mg) % Dry Weight	0.18	0.15-0.30
Boron (B) PPM Dry Weight	78.00	30-70
Copper (Cu) PPM Dry Weight	2.20	5-20
Iron (Fe) PPM Dry Weight	90.30	60-200
Manganese (Mn) PPM Dry Weight	211.60	50-350
Molybdenum (Mo) PPM Dry Weight	0.0	No data
Zinc (Zn) PPM Dry Weight	11.20	8-30
Non-Essential Elements		
Sodium (Na) % Dry Weight	0.01	No data
Aluminum (Al) PPM Dry Weight	95.60	120-160
Lead (Pb) PPM Dry Weight	0	No data , Ideal value would be 0

Values based on sample consisting of 75 mature leaves from new growth collected during summer. From: Berry Soil and Nutrient Management Guide, M. Pritts, C. Heidenreich, L. McDermott & J. Millers (editors) Cornell University, NY www.sare.org. and

Mills, H. A. and J. B. Jones, Jr. 1996. Plant Analysis Handbook II. MicroMacro Publishing. Athens, Georgia.

Cost \$30

Foliar – Petiole Analysis

• Timing: when nutrient levels are most stable

Crop	Timing
Strawberry – June bearers	Renovation
Bramble	Late July-Early August
Blueberry	Late July-Early August
Currents/Gooseberries	Late July-Early August
Grapes	Bloom or Veraison

Nutrient concentration as affected by time throughout the growing season

Decreases Higher concentrations early	Most Elements are Stable	Increases Higher concentrations later
Nitrogen	Magnesium	Calcium
Phosphorus (slight)	Iron	Manganese
Potassium	Copper	
Boron		

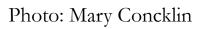
Foliar and Petiole Analysis

- Results will vary with plant stresses
 - -Water
 - -Crop load
 - -Pest injury
- Will vary with pesticide use -Ziram, Copper, Sulfur
- Will vary from cultural practices
- Troubleshooting visual or perceived problems
 -2 samples

Nutrient	Foliar Results	Sufficiency Range
N %	2.17	1.7 - 2.1
P %	0.09	0.1 - 0.4
K %	0.28	0.4 - 0.65
Ca %	0.58	0.3 - 0.8
Mg %	0.15	0.15 - 0.3
B ppm	20.3	30 - 70
Cu ppm	6.6	5 - 20
Fe ppm	39.4	60 - 200
Mn ppm	111.2	50 - 350
Zn ppm	14.5	8 - 30

Mature Blueberry

Nutrient	Foliar Results	Sufficiency Range
N %	2.17	1.7 - 2.1
P %	0.09	0.1 - 0.4
K %	0.28	0.4 - 0.65
Ca %	0.58	0.3 - 0.8
Mg %	0.15	0.15 - 0.3
B ppm	20.3	30 - 70
Cu ppm	6.6	5 - 20
Fe ppm	39.4	60 - 200
Mn ppm	111.2	50 - 350
Zn ppm	14.5	8 - 30


Mature Blueberry

	Soil Results	Sufficiency Range
рН	4.6	4.5 - 5.0
Ca lbs	187	1000 - 1800
K lbs	257	150 - 200 (grape), 240-360 (straw, rasp)
Al ppm	364.5	< 300
B ppm	0.0	0.35 - 0.75

Problems with guessing:

- Multiple deficiencies may exist
- Symptoms similar for deficiency & excesses
- Guessing may result in
 - -Inadequate or excessive plant vigor
 - -Over or under nutrient applications
 - -Poor fruit set
 - -Reduced fruit quality
 - -Misdiagnosis
- Costs you \$\$\$
- Visual symptoms = damage already done

Long Term Management Decisions

- Supplemental water during dry periods
- Foliar analysis annually
- Soil analysis every 2-4 years same lab
- Combine both for fine-tuned fertilizer programs
 Crop load
 - Cultural practices
- Past experience
- Comparing results from year to year will show a reliable trend

Thank you ③

mary.concklin@uconn.edu