

New England Vegetable and Fruit Conference

NOVEL BEHAVIOR-BASED STRATEGIES FOR SWD

Cesar Rodriguez-Saona Entomology

crodriguez@njaes.rutgers.edu

New England Veg & Fruit Conference Dec. 2024

New Jersey Agricultura Experiment Station

BLUEBERRY INSECT/MITE PESTS

Growth stage	pr	pre-bloom			bloom				mid-season					pre-harvest					harvest				post-harvest			
Scale																										
Cranberry weevil																										
Leafrollers																										
Sp anworm s																										
Gypsy moth																										
Thrip s																										
Gall midge																										
Plum curculio																										
Cranberry fruitworm																										
Aphids																										
Leafhoppers																										
Leafminers																	_	~								
Oriental beetle																										
Blueberry maggot																	-		į.,							
		•				•	•										3	-	2							
Japanese beetle																										
BB bud mite																										

Bars show period when scouting and management of the pest is most important.

BLUEBERRY MAGGOT IPM

New Jersey Agricultura Experiment Station

BLUEBERRY INSECT/MITE PESTS

Growth stage	pre-bloom			bloom					mid-season					pre-harvest					harvest			post-harvest				
Scale																										
Cranberry weevil																										
Leafrollers									1								k.									
Sp anworm s																										
Gypsy moth																									\square	
Thrip s																										
Gallmidge																									\square	
Plum curculio																										
Cranberry fruitworm																										
Aphids																				2		8. O				
Leafhoppers																										
Leafminers																									\square	
Oriental beetle							1	1	•	1	1															
Blueb erry							1		E.	X	-	1														
Spotted wing drosophila						-				-																
Japanese beene						1		1	2			_														
BB bud mite									1			1														

Bars show period when scouting and management of the pest is most important.

New Jersey Agricultura Experiment Station

BLUEBERRY MAGGOT FLY

Emergence of blueberry maggot fly later and later each year.

Possibly due to biotic (competition with SWD) factors.

A possible case of **Competitive Exclusion**.

Shope, Rodriguez-Saona et al.

Rutgers

New Jersey Agricultura Experiment Station

SPOTTED-WING DROSOPHILA

Emergence of SWD earlier and earlier each year.

Possibly due to abiotic (climate change) factors (number of winter freezing days).

Shope, Rodriguez-Saona et al.

ON-GOING RESEARCH

New Jersey Agricultural Experiment Station

BEHAVIORAL CONTROL

New Jersey Agricultura Experiment Station

BEHAVIORAL CONTROL

ATTRACT-AND-KILL

- Attractive cues:
 - Visual
 - Chemical
- Insecticide kills pest
- Reduce injury
- Reduce non-target affects

CAN IT WORK FOR SWD?

ATTRACT-AND-KILL SWD

Attractants + Phagostimulant + Insecticide

SPLAT SWD A&K (HOOK SWD/ ACTTRA SWD)

Combi-Protec

RUTGERS New Jersey Agricultu Experiment Station

SPLAT SWD A&K

• ISCA Technologies Inc.

Lab Trial

- Four organic insecticides: Grandevo, Venerate, Azera, Entrust
- One conventional insecticide: Danitol
- SWD mortality after 24 h

SPLAT SWD A&K

Small Plot Field Trial

- 2-3 SPLAT SWD A&K applications during fruit ripening. Plots = 0.04 ha.
- Fruit samples (~150 berries/plot) taken
 1 or 2 weeks after.
- Checked SWD emergence in the laboratory.

New Jersey Agricultura Experiment Station

SPLAT SWD A&K

<u>Elliott (1 week)</u>

RUTGERS New Jersey Agricultura

SPLAT SWD A&K

Large Plot Field Trial

- Commercial blueberry farms.
- Treatments: SPLAT SWD A&K vs
 Control.
- Applications every week or every other week.

New Jersey Agricultura Experiment Station

SPLAT SWD A&K

SPLAT SWD A&K REDUCES FRUIT INFESTATION

Urbaneja-Bernat, Rodriguez-Saona et al.

GERS

SPLAT SWD A&K

Cage Field Trial

- Five SWD densities: 0, 20, 40, 60, and 80.
- **Treatments**

No = No SPLAT SWD A&KFoliage = SPLAT SWD A&K applied to a leaf Bark = SPLAT SWD A&K applied to the bark

SPLAT SWD A&K

Cage Field Trial

- Three fruit densities: 25, 50, and 100.
- <u>Treatments</u>

No = No SPLAT SWD A&K Foliage = SPLAT SWD A&K applied to a

leaf

ATTRACT-AND-KILL SWD

Attractants + Phagostimulant + Insecticide

SPLAT SWD A&K (HOOK SWD/ ACTTRA SWD)

Combi-Protec

School of Environmental and Biological Sciences

COMBI-PROTEC

- Insect bait (Andermatt USA Corporation).
- Feeding stimulant.
- Adjuvant tank mix with any insecticide.
- Treatments:

1) UTC

2) Spinetoram (Delegate) or Spinosad (Entrust) 6 oz

- 3) Delegate/Entrust (6 oz) + Combi-protec
- 4) Delegate/Entrust (3 oz) + Combi-protec

School of Environmental and Biological Sciences

COMBI-PROTEC

Cage Field Trial

- Highbush and lowbush blueberries and raspberries.
- OR, NJ, ME, NY.
- SWD flies (100) were released in each cage.
- Fruit were sampled and evaluated for number of eggs laid, larvae, and adult emergence.

School of Environmental and Biological Sciences

COMBI-PROTEC

School of Environmental and Biological Sciences

COMBI-PROTEC

School of Environmental and Biological Sciences

COMBI-PROTEC

MAINE

School of Environmental and Biological Sciences

COMBI-PROTEC

School of Environmental and Biological Sciences

COMBI-PROTEC

Small-Plot Field Trial

- Small-plot field studies.
- Highbush and lowbush blueberries.
- GA, ME, MI.
- Applications once a week.
- Collected ripe fruit samples from bushes, assessed for SWD larvae and adult emergence.

School of Environmental and Biological Sciences

COMBI-PROTEC

School of Environmental and Biological Sciences

COMBI-PROTEC

School of Environmental and Biological Sciences

COMBI-PROTEC

School of Environmental and Biological Sciences

COMBI-PROTEC

Semi-Field Trial

- Treatments:
 - UTC = untreated control Insecticide program half rate Insecticide program half rate + combi-protec Insecticide program full rate Insecticide program full rate + combi-protec
- Weekly rotation of insecticides (e.g., Imidan, Mustang Maxx, Malathion, Delegate)
- Collected fruit and foliage from bushes.
- Assessed adult mortality, egg count, and adult progeny emergence.

TGERS School of Environmental and Biological Sciences

DAT 0

COMBI-PROTEC

Adult Mortality

0

DAT 4

Combi-protec 🕂 🛛

Half Rate

DAT O

HR + CP

Full Rate

FR + CP

а

Combi-protec

HR+CP

DAT 4

Half Rate

Full Rate

FR + CP

UTGERS School of Environmental and Biological Sciences

COMBI-PROTEC

Oviposition

FR+CP

ATTRACT-AND-KILL SWD

- Effective
- Lower insecticide use
- Lower insecticide residues
- Compatible with IPM

- Not 100% control Low tolerance
- Density dependent (SWD + fruit)
- \$\$\$

ARE MULTIPLE STRATEGIES BETTER THAN ONE?

School of Environmental and Biological Sciences

BEHAVIORAL CONTROL

PUSH-PULL

- Alternative, behavioral control strategy
- Combines a repellent/oviposition deterrent and attractant

School of Environmental and Biological Sciences

PUSH-PULL

Challenges to Developing Repellents

•Discovery/Sources of repellents -Botanicals

-Microbes

-Serendipity

- Safety (Human and Environment)
- Deployment
- •Costs

PUSH-PULL

SWD Repellents Previously Tested

Novel Sources of Repellents

- 1. Repellents from pathogenic fungi odors
- 2. Repellents from fermented apple juice

FUNGAL-INDUCED ODORS

Grey mold *Botrytis cinerea*

Cha et al. Insect Science **2019**

- SWD adults repelled *B. cinerea* infected raspberries.
- SWD oviposited fewer eggs on infected raspberry fruit.
- Larval survival was reduced when reared on infected raspberry.

FUNGAL-INDUCED ODORS

Urbaneja-Bernat, Rodriguez-Saona et al. 2020

RUTGERS

School of Environmental and Biological Sciences

FUNGAL-INDUCED ODORS

Urbaneja-Bernat, Rodriguez-Saona et al. 2020

Objective: Identify volatiles emitted from anthracnose-infected fruit

5 Colletotrichum fioriniae strains

Khodadadi et al. 2020 Scientific Reports

n = 3 replicates per treatment ~10 g blueberry sample

FUNGAL-INDUCED ODORS

TGERS

FUNGAL-INDUCED ODORS

RUTGERS

School of Environmental and Biological Sciences

FUNGAL-INDUCED ODORS

ketone

но

3-hydroxy-2-butanone

benzenoid

esters

Objective: Test volatiles emitted from anthracnose-infected fruit on SWD

FUNGAL-INDUCED ODORS

FUNGAL-INDUCED ODORS

FUNGAL-INDUCED ODORS

FUNGAL-INDUCED ODORS

FUNGAL-INDUCED ODORS

Objective: Test individual volatiles emitted from anthracnose-infected fruit on SWD

20 flies/replicate (1:1 ♂/♀) x 5 assays/volatile

of Environmental ological Sciences

FUNGAL-INDUCED ODORS

of Environmental ological Sciences

FUNGAL-INDUCED ODORS

	Treatm	nent	Control			<u>P value</u>
	control ethyl propanoate 3-methyl-3-buten-1-ol 2-methylpropanal 2-methyl-1-propanol		n.s.		0.38	0.54
			*		12.8	< 0.001
			***		54.13	< 0.001
			***		45.36	< 0.001
			***		36.56	< 0.001
	a-methyl-1abutanol		***		23.48	< 0.001
	ethyl isobutyrate		***		12.12	< 0.001
			***		33.76	<0.001
	ethyl butyrate		***		17.35	<0.001
	ethyl crotonate	0	***		5.31	0.02
	100 50	(0	50	100	
% Choice						

Objective: Test 2 most repellent volatiles on SWD

Cage Field Trial

- 1.8 x 1.8 x 1.8 m (10 m apart)
- Replicated 10 times for each treatment

Within each cage:2 potted blueberry bushes(3-4 years old)

RUTGERS

School of Environmental and Biological Sciences

FUNGAL-INDUCED ODORS

- 5 clusters of ~10 berries hung randomly around each cage
- One bush contained a treated sachet (2.5 mL pipetted onto felt), the other contained a blank sachet
 - 50 SWD (1:1 M:F)
 - 🕔 24 hours
 - Berries inspected for number of eggs laid and incubated for adult emergence

Repellency Index = $(n_{control} - n_{volatile})/n_{total}$

PUSH-PULL

Novel Sources of Repellents

- 1. Repellents from pathogenic fungi odors
- 2. Repellents from fermented apple juice

METHYL BENZOATE

- Demonstrated repellent/toxicity effects in laboratory setting (Feng and Zhang 2017).
- Floral volatile found in many plants.
- Low toxicity towards non-target insects (Zhu et al. 2019, Mostafiz et al. 2019, 2020).

Objective

Assess the potential of Methyl Benzoate as an SWD repellent/oviposition deterrent in highbush blueberry

METHYL BENZOATE

Experimental Design

Conducted on U-pick farms in Maryland and New Jersey

METHYL BENZOATE

Experimental Design: Control

METHYL BENZOATE

Experimental Design: Push

METHYL BENZOATE

Experimental Design: Pull

METHYL BENZOATE

Experimental Design: Push-Pull

METHYL BENZOATE

- Sachet made with polyethylene tubing
 - Push: Methyl Benzoate (8ml, n=3/bush)
 - Pull: Quinary blend (13ml total volume, n=1/trap)
 - Control: Blank sachet
- Onset of sampling after sachets were placed for a week, then once weekly
 - Empty and count SWD in traps
 - 2 berries sampled per bush (n=20/plot) and eggs counted within 24hrs

METHYL BENZOATE

Trap Catch

Gale, Ferguson, Rodriguez-Saona et al. 2024

METHYL BENZOATE

Berry Infestation

Gale, Ferguson, Rodriguez-Saona et al. 2024

METHYL BENZOATE

Frequency of Infestation

Gale, Ferguson, Rodriguez-Saona et al. 2024

New Jersey Agricultura Experiment Station

METHYL BENZOATE

Extent of Infestation

Gale, Ferguson, Rodriguez-Saona et al. 2024

CONCLUSIONS

- Attract-and-kill approaches show promise in reducing SWD infestation
- But could be enhanced with the use of repellents/oviposition deterrent compounds (PUSH-PULL)
- Anthracnose-infected fruit also reduces SWD oviposition and repels flies.
- A volatile from fermented apple juice reduces SWD oviposition and repels flies.

FUTURE DIRECTIONS

- Incorporation into existing IPM programs.
- Further work on deployment and field-scale effectiveness needed.
- Testing new behavior-based products (BioMagnet Ruby, Decoy, etc.).

For agricultural and commercial use, shadeh nursery and home use. It is used to mitigate Spotted-wing drosophila (Drosophila suzukii SWD) Decov-SWD^M is a food-grade product. Active ingredients Citric acid 0.01%

This pesticide is exempt from registration with the U.S.

Environmental Protection Agency under FIFRA section 25(b) regulations. Inert ingredients Animal glue, Cherry, Cellulose pulp, Dextrins, Gelatins. Total 99.99%

Each tablet weighs ~0.06 oz (1.8 g), at a density of ~0.0725 lbs/sq ft.

TerrAmor Incorporated 3870 Aberdeen Str OR 97302 transactions@terramoragsolutions.com, Tel 5417404149, USA PAT: US 2021/0321627 A1, Patents Pending

KEEP OUT OF REACH OF CHILDREN

MODE OF ACTION

Decoy protects against egg laying on susceptible fruit. The insect lays its egg in the tablet as opposed to fruit. Sometimes, SWD females can feed or probe on Decov instead of laying eggs in the fruit. In addition, eggs laid by SWD into Decoy cannot develop because of dehydration.

COMPATIBILITY Decoy is compatible with most used insecticides, funcicides and fertilizers. Contact the manufacturer for specific

USE SITES The product can be used in agricultural and commercial use.

shadehouse, tunnel, nursery and home use. It is used to control Spotted-wing drosophila (*Drosophila suzukii*). Decoy can be used on all susceptible crops including strawberries, blueberries, caneberries, cherries, grapes and additional susceptible fruit

PERSONAL PROTECTIVE EQUIPMENT Not required.

USER SAFETY RECOMMENDATIONS Wash hands before eating, drinking or chewing gum, using tobacco or using the toilet.

ENVIRONMENTAL HAZARDS and NON-TARGET IMPACTS None known

FIRST AID AND PRECAUTIONS

Store only in original container in a dry place inaccessible to children and pets. Do not reuse empty containers. Avoid contact with eyes, skin or clothing. If in eyes, flush with water for at least 15 minutes. If on skin, wash with plenty of soap and water. Get medical attention if irritation persists.

STORAGE AND DISPOSAL

Store in a cool, dry area, away from sunlight or heat source Do not store below 20 and above 86°F (-6.66 to 30°C) for extended periods of time.

- Product must be kept away from additional sources of heat. It may be appropriate to enquire whether prevailing or anticipated temperatures may be harmful. Flash point is 302°F (150°C)
- Product must be protected from excessive humidity and must
- accordingly be stored under cover
- Store only in original container in a dry place inaccessible to children and pets. Do not reuse empty containers

USE DIRECTIONS

The Re-Entry Interval (REI): 0 hours. The Pre-Harvest Interval (PHI): 0 hours. Personal Protective Equipment (PPE) is not required for this

Do not use this product in a manner inconsistent with its labeling. Apply the product at the rate of fifty (50) dispensers per acre (124 dispensers/ha). A minimum of ten (10) dispensers should be used at a time. Do not place single dispensers in isolation. Dispensers should therefore be placed up to approximately 40 feet (12 m) apart, depending on row and plant spacing of the crop. The dispensers need contact with a daily (ideally afternoon) supplem nted water source. It is suggested that dispensers should be placed directly below or close to the irrigation source, taking spacing into consideration.

Use directions must be followed carefully. It is impossible to eliminate all risks inherently associated with the use of this product. Crop injury, ineffectiveness, or other unintended consequences may result because of factors including, but not limited to: weather conditions; presence of other materials; or the manner of use or application, all of which are beyond the control of the manufacturer or seller. The buyer/user shall assume all such risks.

PRODUCT DESCRIPTION

Decoy is a brownish red solid formulation within a 0.06 oz. (1.8 g) tablet (pH = 6.7) in a plastic dispenser. The mixture turns gel-like when coming into contact with water. After water absorption, the product has a slightly mutty small

CONDITIONS OF SALE

nor is unaware of any local, state, or federal regulations that define the active ingredient as hazardous. State Regulations: This product is not known to contain any components for which the State of California has found to cause cancer, birth defects or other reproductive harm.

WARRANTY AND DISCLAIMER

To the extent consistent with applicable law, seller makes no warranty, express or implied, of merchantability, fitness or otherwise concerning the use of this product other than as indicated on the label. To the extent consistent with applicable law, user assumes all risks of use, storage, or handling not in strict accordance with accompanying direction

photocopying, recording, or other electronic or me althout the prior written permission of 5 days 110

Suterra

Thank you

United States Department of Agriculture National Institute of Food and Agriculture

Sustainable Agriculture Research & Education

