Shifting Priorities and Challenges of Pome Fruit Pest Management

Peter Jentsch

2024 New England Vegetable and Fruit Conference and Trade Show December 17th, 2023

11:30am - 10:00am

When Rouge Waves Hit Sailing

When Rouge Waves Hit Pome Fruit

Tall Spindle System : Tree Architecture

- Utilizes A Weak Highly Dwarfing Rootstock
- Requiring Adequate Support Systems For High Density
- Produce High Volume, Large Fruit With Excellent Color

When Rouge Waves Hit Pome Fruit

H-Brace System

- Heavy Crop Load Exceeding Design
- Overcropped upper canopy
- Requiring additional support

H-Brace System

- Strong Wind Causing Extreme Leverage
- Insufficient pressure treated in-rows support posts
- Insufficient post sizing for crop and wind

Apple Orchard Support Systems

- Trellis Systems Design: Inadequate For Canopy Crop Load
 (Upper Canopy)
- Weak Anchorage: Post Diameter Insufficient
- In-row Post: Diameter Too Far Apart
- Undersized & Poor Pressure Treated Posts: Frequently Snap

At Base.

- Improperly Tensioned Wires
- Heavy Rainfall: Soft Ground & Heavy Wind
- Sandy Or Wet Soils Higher Failure Rates Than Clay Or Dry

poma 🚧

tech

Sudden Apple Decline

Tree nutritional levels must be kept at optimum for reducing the risk of cold injury to fruit trees. Carbohydrates, nitrogen, potassium, boron, copper, zinc, and manganese are all involved.

Mineral Nutrition as a Factor In Cold Tolerance Of Apple Trees James R. Schupp, Lailiang Cheng, Warren C. Stiles, Ed Stover, and Kevin lungerman

NEW YORK FRUIT QUARTERLY • VOLUME 9 NUMBER 3 • 2001

'M.9 Series: Pajam 2, T-337 & Nic 29

- **Susceptibility** to fire blight (M9 series).
- McArtney, Steve & Obermiller, J. (2011). In low temperature event in 2008-09 ightarrow

M.9 Pajam 2 and T337 expressed visible and severe trunk injury found

McArtney, Steve & Obermiller, J. (2011). Effect of Dwarfing Rootstocks on Low Temperature Tolerance of 'Golden Delicious' Apple Trees During Winter 2008-2009. Journal-American Pomological Society. 65. 178-184. tech

boma

(Georgia Mountain Research and Education Center in Blairsville, GA)

'M.9 Series: Pajam 2, T-337 & Nic 29

- **Susceptibility** to fire blight (M9 series).
- McArtney, Steve & Obermiller, J. (2011). In low temperature event in 2008-09 found
 M.9 Pajam 2 and T337 expressed visible and severe trunk injury
- 'Sudden Apple Decline' (2013 Kari Peters, Penn State 'M.9-337 & Nic 29).
 - **Graft union** is affected: Severe shedding of bark around graft union.
 - Necrosis begins at the graft union and it proceeds up the trunk of the tree.

McArtney, Steve & Obermiller, J. (2011). Effect of Dwarfing Rootstocks on Low Temperature Tolerance of 'Golden Delicious' Apple Trees During Winter 2008-2009. Journal- American Pomological Society. 65. 178-184.

D.R. Rosenberger (Cornell / HVRL, Highland, NY; Hort. Expo Proceedings 2017):

- 1. Winter Injury (Supported By Jason Londo, Cornell University)
- 2. Fire Blight In The Rootstock (M-9 Series)
- **3.** Herbicide Injury
- 4. Drought Stress
- 5. Orchard flooding / Tree Row Depressions
- 6. Fungal Canker And Wood-rot Pathogens
- 7. Latent Apple Viruses
- 8. Boring Insects

Sudden Apple Decline: Trunk-Related Problems in Apples David Rosenberger, Professor Emeritus Cornell University's Hudson Valley Lab, Highland, NY

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.hort.cornell.edu/expo/proceedings/2017/TreeFruitPestMGMT.AppleTrunkDisorders.Rosenberger.2017.pdf

Winter Injury (Supported By Jason Londo, Cornell University, 2023)

February Rootstock sensitivity recordings of temperature observations

Winter Injury (Supported By Jason Londo, Cornell University, 2023)

CC	a sensitive				
to	^{cks} G.814		G.210		
	M.9		G.890		
	G.11		G.935	•	Dry g
	CG.4004		G.203,	•	Wet
	CG.6589		G.87		
	CG.8189		G.257	1.	Rais
	B.9		G.213	2.	Crea
	G.222		G.202	3.	Barl
	CG.4004		G.214		soli
	G.214		G.41		
,	G.202	,	CG.525		
1			7		
		most c	old hardy	roots	stocks

most

roots

Additional Factors Contributing to Dry ground (Shale / Sandy Soil

- Wet soils (Topography 'Depressions)
- 1. Raise tree scion / rootstock at planting
- 2. Creating Tree Row Berm to shed water
- 3. Bark-chip / Woodchip mulch to maintain
 - soli moisture during drought. (Voles)

D.R. Rosenberger (Cornell / HVRL, Highland, NY):

- 1. Winter Injury (Supported By Jason Londo)
- 2. Lack Of Adequate Nutrition (J. Schupp at al., Penn State et al.)
- 3. Fire Blight In The Rootstock (M-9 Series root suckers)
- 4. Herbicide Injury
- 5. Drought Stress
- 6. Flooding / Tree Row Depressions
- 7. Fungal Canker And Wood-rot Pathogen Borers (B)
- 8. Latent Apple Viruses
- 9. Boring Insects

Broad Necked Root Borer (B) Black Stem Borer (B) Round-headed Apple Tree Borers (B) Flat-headed Apple Tree Borer (B) Dogwood Borer (Lep.)

Leopard Moth (Lep.)

Sudden Apple Decline: Trunk-Related Problems in Apples

David Rosenberger, Professor Emeritus Cornell University's Hudson Valley Lab, Highland, NY Hudson Valley NYS: 2021-24 M9 T337 Cambium Necrosis

Bark / Cambium Separation

- Tree Stress Producing Ethanol (EtOH)
- Tree Foliage 'Yellowing'
- Ambrosia Beetle Infestation
- Tree Collapse

M9 T337 Cambium Necrosis & BSB Infestation

April 10th, 2024

Ambrosia Beetle: Black Stem Borer Xylosandrus

Wildfire Gala G41 along woodland.

• BSB infected tree with remaining trunk showing galleries and fungal growth in rearing chambers.

14 miles between N/S

Early Spring Management

BSB Adult Capture & EtOH Bolt Boring Wallkill, NY 2024

BSB Adult Capture & EtOH Bolt Boring Milton, NY 2024

Walden & Wallkill

• 1st bolt Infestation

Wallkill

High BSB captures

Milton (Hudson River)
<u>1st bolt Infestation</u>

Black Stem Borer (BSB), *Xylosandrus germanus* Management Studies

2021 Conducted studies

- Beetle Guard (ISCA Tech)
- Verbenone / methyl silicate repellent 'gel' @ 10' intervals
- Determine efficacy of the product to reduce populations of BSB within the orchard
- **Goals:** Reduce the attack of stressed apple trees.
- Unable to show a decrease in trap #'s & infestation

Black Stem Borer (BSB), *Xylosandrus germanus* Management Studies

April 30th 2024: Replicated Danitol (fenpropathrin) application to EtOH bolts. No reduction of infestation to treated Bolts @ 21.3 fl. oz./A rate compared to the untreated

control.

Black Stem Borer (BSB), *Xylosandrus germanus*

Recommended Management (Reducing Tree Stress)

Early Spring Trunk Applications to 'stressed trees'

- a. Permethrin (Pounce, Mustang Max)
 - i. Pyrethroids most effective in cool temperatures
 - ii. Detoxified by insects in temps above 70°F

Adult Ambrosia Beetles

Lower

Manifold

Flip Nozzles

BSB Management

Canopy & Trunk Management for TPB

* Use larger output for lower two nozzles on AB sprayer to cover trunks for BSB @ TC-Pink and PF

Table	Table 11.1.1 Pesticide Spray Table - Apples.								
IRA 3A	C & FRAC Product Ambush 25WP	Rates PHI (c 6.4-25.6 oz/acre	lays) PF	REI (hrs) 12	Efficacy High				
ЗA	*Asana XL	4.8-14.5 fl	21	12	High				
		oz/acre							
		2-5.8 fl oz/100 gal							
		water							
ЗA	*Baythroid XL 1EC	2-2.4 fl oz/acre	7	12	High				
ЗA	*Danitol 2.4EC	10.67-16 fl	14	24	High				
		oz/acre							
ЗA	*Mustang MAXX	1.28-4.0 fl	14	12	High				
		oz/acre							
ЗA	*Pounce 25 WP	6.4-16 oz/acre	PF	12	High				
ЗA	*Warrior II	1.28-2.56 fl	21	24	High				
		oz/acre							
22	Avaunt 30WDG	5-6 oz/acre	14	12	Moderate				
29	Beleaf 50SG	2-2.8 oz/acre	21	12	High				
3A/6	*Gladiator EC	19 fl oz/acre	28	12	High				
		4.75 fl oz/100 gal							
		water							
3A/28	*†Besiege	6-12 fl oz/acre	21	24	High				

1st App. Pounce (permethrin) @ 16.0 oz/A 2nd App. Dopitol (feapprepathrin) @ 16.0

Black Stem Borer (BSB), Xylosandrus germanus

Recommended Management (Reducing Tree Stress)

- Early Spring Trunk Applications to 'stressed trees'
 - a. Permethrin (Pounce, Mustang Max), Danitol
- 2. Removing Infested Trees
- 3. Selecting Winter Hardy Rootstocks in New Plantings
- 4. Maintain adequate nutritional levels
- 5. Develop Water Drainage Plan
 - a. Berm Trees In Orchard Depressions
- 6. Develop Increased Irrigation Capacity
 - a. Maintain adequate moisture

Spring Insect Pest Appear Late April-Early Management

Spongy Moth Lymantria dispar (formally Gypsy Moth)

Early Instar Larva

Late Instar Larva Male

Femal e

Spongy Moth Lymantria dispar (formally Gypsy Moth)

Fungal Infected SM

Since 1989, 'Gypsy Moth' was controlled by the introduced entomophagous fungus,

Entomophaga maimaiga, a Japanese fungus, Infecting the insect larval stage.

The fungus resides in the top layer of soil as resting spores and persists for at least 11 yrs.

- It has successfully managed spongy moth populations in North America since its introduction in the US.
- It has caused high levels of infection among spongy moths in populations, leading to yearly population crashes.

Spongy Moth *Lymantria dispar* (formally Gypsy Moth)

 Researchers theorize that recent drought during the summer-fall fungal infection period has reduced the efficacy of the biological control to reduce the Spongy Moth populations, giving rise to recent outbreaks.

Larva create silk threads and 'float' from the woodlands into the orchard (L)

Foliar feeding beginning Late April through June. Moving to fruitlets caused significant injury to fruit

Cause allergic reactions to orchard workers.
The gypsy moth caterpillars have spiny hairs which may case

Delayed Petal Fall Application

Gala: Leaf and Fruit Feeding. Orange Co. May 15th

Spongy Moth Fruit Injury Expansion

Previous feeding more prominent during fruit expansion.

Hand Thinning Required

Migration of larger Spongy Moth from wooded edge feeding on terminal foliage. June 12th

Managing the Insect Pest Complex: April- Early May

Spongy Moth (formally Gypsy Moth)

- Green Fruitworm: (SGFW)
- Obliquebanded Leafroller (OBLR)
- Oriental Fruit Moth (OFM)
- Redbanded Leafroller (RBLR)

Spongy Moth Lymantria dispar (formally Gypsy Moth)

Threshold: Applications upon 1st emergence & migration

Bacteria: *Bacillus thuringiensis*/B.t. is a fermented toxin used at low rates using 5-day intervals is an excellent materials for OBLR, GFW, RBLR, OFM and can be used during bloom to manage immature larval stages.

- UV sensitive Best use during overcast sky
- Low rates using short re-application intervals
- Can be used during bloom
- Pollinator safe

Lepidopteran complex:

Overwintering larvae Speckled green fruit worm (SGFW) Orthosia hibisci Red banded leafroller (RBLR), Argyrotaenia velutinana (Walker) Obliquebanded leafroller (OBLR) Argyrotaenia velutinana (Walk

The tools for use against the lepidoptera complex IRAC Class:

5Spinosyns (Delegate, Entrust)28Diamides (Altacor, Exirel, Verdepryn)28 / 3Pre-Mix (Besiege...)

Todd M. Gilligan and Marc E. Epstein, CSU,

Spring Insect Pest Management (Pre-Bloom)

- Green Fruitworm: (SGFW)
- Obliquebanded Leafroller (OBLR)
- Oriental Fruit Moth (OFM)
- Redbanded Leafroller (RBLR)
 - a. San Jose Scale (SJS) (OW In-Orchard)
 Application @ 2% Oil at GT / 1% at 1/2" green (Copper)
 Esteem 35WP @ 4-5 oz./A (IGR) GT Pink (no oil needed)
 Sivanto Prime @ 10.5-14.0 fl. oz/A (oil needed Captan)

Managing The Insect Pest Complex: April: Tight Cluster - Pink

Tarnished Plant Bug (TPB)

- <u>Scout Perimeter</u> 'Early' Apple Var. Along Broadleaf Weed Complex for adults
- Adult Feeding: 'Bleeding' Sap Flower Bud Clusters (Temp. 50° 60° F For 3d)
- White 6x8" Traps Hung @ 2' Low Branches Trap Threshold 3 / Trap

Managing The Insect Pest Complex: April: Tight Cluster – Pink - PF

Tarnished Plant Bug (TPB)

• Beleaf 2.0 - 2.8 oz/ A IRAC 29

Pyrethroids

• Danitol 2.4EC 10.67 - 16 fl. oz/ A IRAC 3A

Pyrethroid Premix

• Besiege 6.0 - 12 fl. oz/ A IRAC 3A + 28

*Besiege Chlorantraniliprole (Altacor) / Lambda-cyhalothrin (Warrior)

- Managing the Insect Pest Complex: Early May (Pink) European Apple Sawfly: Hymenopteran / primitive wasp
 - Emerges during late pink-early bloom

Managing the Insect Pest Complex: Early May European Apple Sawfly: Hymenopteran / primitive wasp

- Active egg laying beginning at Pink early fruit set
- Applications made prior to king bloom (Pink) or Petal

Fall

tech

Managing the Insect Pest Complex: Early May European Apple Sawfly: Hymenopteran / primitive wasp

- Verdepryn 100 SL, Altacor, Exirel (IRAC 28)
- Pyrethroids / Pre-Mix (Leverage 360)
- Imidan 70W

Managing the Insect Pest Complex: Pink – 2C Plum Curculio

- Active migration into orchards @ mean ambient temperatures exceeding 50 °F for at least 3 days
- Monitor in stone fruit (Plum tree) / Tedders

Trap

tion can begin at King

Managing the Insect Pest Complex: Pink – 1C

Plum Curculio PC (Pre-bloom)

• Pyrethroid used for BSB / TPB reduces risk of early PC orchard entry provides 'insurance' extended bloom, delayed honeybee removal, rain...

Plum	Curculio	@
	PF	

			Effica	acy
<u>Ins</u> 1.	<u>secticide</u> Avaunt 30WDG	Rate (High) 5-6 oz./A	<u>PC</u> High	IRAC 22A
2.	Imidan 70-W	2.13 – 5.75 lb./A	High	1B
3.	Verdepryn 100 SL	11.0 fl. oz./A	High	28
4.	Exirel	20.5 fl. oz./A	High	28
5.	Voliam Flexi WDG	7.0 oz./A	High	28 + 4A
6.	Besiege	12.0 fl. oz./A	High	28 + 3A

*Besiege Chlorantraniliprole (Altacor) / Lambda-cyhalothrin (Warrior)*Voliam Flexi WDG Chlorantraniliprole (Altacor) / Thiamethoxam (Actara)

Management of Early Season Insect Pests: Tarnished Plant Bug. HVL 2008

Treatment	Formulation amt./A.	Timing	% ТРВ	% PC
Actara	4.0 oz./A	P, PF, 1C	8.3 b	2.0 a
Calypso SC	4.0 oz./A	P	7.6 b	2.1 a
Baythroid XL	2.8 oz./A	PF		
Calypso SC	6.0 oz./A	1C		
Asana XL 14	4.5 oz./A	P	5.3 ab	2.6 a
Calypso SC	6.0 oz./A	PF-1C		
Asana XL 14	4.5 oz./A	TC, P	2.5 a	0.0 a
Calypso SC	6.0 oz./A	PF-1C		
Untreated			8.8 b	3.3 a poma 鄃 tech

Optimizing Insect Pest Management

Monitoring Tools

Identifying Pest: Presence

Monitoring Tools Species Specific : Traps, Lures

- Employ Sustained Trap Capture
- NEWA Degree-Day Modeling: Codling Moth

Sustained CM Trap Capture 3/trap

Codling Moth Mgt. 1st Codling moth in pheron Hitentral Mag410th

- Cool temps delayed sustain capture until 15th May
- Using Biofix date of May 14th of sustained capture
- Expected egg laying begin at 50DD on 18th May
- First hatch began at 250 DD 50BE
- 1st Cover application: May 28th

Sustained CM Trap Capture 3/trap

Codling Moth Mgt. Milton. NY 2024

First hatch begins at 250 DD_{50BE} June 7th, 2019 May 28th, 2024

	1 st Cover for PC & Codling Moth				000000
	2 nd	су			
<u>Ins</u> IR	<u>secticide</u> AC	<u>Rate (High)</u>	<u>PC</u>	<u>CM</u>	
1.	Verdepryn 100 SL	11.0 fl. oz./A	High	High	28
2.	Exirel	20.5 fl. oz./A	High	High	28 Neonic
3.	Voliam Flexi WDG	7.0 oz./A	High	High	28 + 4A
4.	Besiege	12.0 fl. oz./A	High	High	28 + 3A ⁻
	2 ^{na} Gei	neration for Coo OBLR	dling Mot	th &	
A.	Delegate	12.0 fl. oz./A		High	5
Β.	Assail 30SG	8.0 oz./A	l i	High	4A
Rota for e	ate IRAC classes to reduce each generation	the insecticide resista	ance potenti	al	poma tech DRCHARD RESEARCH & CONSULTING

Optimizing Insect Pest Management

Management Tools Managing the Pest Complex: May - August Wooly Apple Aphid 1st Cover Movento 6-9 fl. oz. /acre + 0.25% penetrant

- Green, Rosy Wooly Apple Aphid / Apple Maggot: Start with: Admire Pro / Assail 30SG (Acetamiprid) Neonicotinoid
- Active ingredient MOA inhibits egg laying into fruit
- Assail will not kill AM flies unless it ingests the active ingredient.
- AM Spheres will continue to capture AM flies throughout the season

Stink Bug Management Green & Brown Marmorated Stink Bug

Stink Bug Management : High Value / Late Season Fruit (Ruby Frost & Pink Lady) Perimeter Attract and Kill Stations @ 30 meters (Bifenthrin Treated)

Perimeter Applications of Venerate XC (Profarm) @ 128.0 fl. oz./ A

On-Farm Research to Determine Efficacy of Venerate XC to Reduce Fruit Feeding Injury to Pink Lady. Campbell Hall, NY 2024

Treatment	% B Mor	MSB tality	% Fruit Sting	% fruit with Internal Corking	Total # of Internal Corking Sites
Brigade		100.0	0.0	0.0	0.0
Venerate XC		8.3	0.0	0.0	0.0
UTC		0.0	16.7	33.3	2.0

Treatment	Adult Caged Application Date	% BMSB Mortality	% Fruit Sting	% fruit with Internal Corking	No. of Internal Corking Sites
Brigade	17-Sep	100.0	0.0	0.0	0.0
Brigade	21-Sep	100.0	0.0	0.0	0.0
Brigade	28-Sep	100.0	0.0	0.0	0.0
Brigade	1-Oct	100.0	0.0	0.0	0.0
Means		100.0	0.0	0.0	0.0
Venerate XC	17-Sep	0.0	0.0	0.0	0.0
Venerate XC	21-Sep	0.0	0.0	0.0	0.0
Venerate XC	28-Sep	0.0	0.0	0.0	0.0
Venerate XC	1-Oct	33.3	0.0	0.0	0.0
Means		8.3	0.0	0.0	0.0
UTC	17-Sep	0.0	0.0	66.7	4.0
UTC	21-Sep	0.0	33.3	33.3	2.0
UTC	28-Sep	0.0	33.3	0.0	0.0
UTC	1-Oct	0.0	0.0	33.3	2.0
Means		0.0	16.7	33.3	2.0

BMSB Aggregation Duel Lure Tedders Trap Captures Exp. Site. Orange Co., NY 2024

Tedders Trap sites, Campbell Hall, NY

BMSB caged adult on fruit Var. Pink Lady for 14d.

Join Our Morning Brew

Growing a brighter future for your fruit trees, together.

(LIVE) MONDAYS – 6AM EST

Our FREE online forum dedicated to empowering you with tools and insights to keep your fruit crops thriving.

Sign up to receive your FREE invite.

First name

Last name

Email Address *

We don't spam! Read our privacy policy for more info.

pomatech.org

Thank You For Your Attention

Questions ??

Climate Influences On Pest Management Under Dry or Drought Conditions

Benefits

- Longer pesticide residual (Exception: Bt Dipel susceptible to UV Light....)
- Reduced incidence of disease
- Reduced emergence of Apple Maggot in dry soils (June-Aug.)
- Increased Phytophagous beneficial mites (low fungi pathogens)

Deficits

- Increased foliar feeding ERM, TSSM, Aphids
- Increased success of Lepidopteran larva (low fungi pathogens)
- Increased stink bug activity
- Increased bird feeding of fruit

Climate Influences On Pest Management Under High Moisture Relative Humidity / Rain Conditions

Benefits

- Increased biological control
 - Beauveria bassiana (prior season conditions for fungi success)
 - Entomophaga maimaiga species specific for Spongy (Gypsy) Moth

Deficits

- Decrease in Pesticide Residual
- Increased disease pressure (Apple scab, Fire Blight)
- Standing water causing tree anoxia (prompting production of EtOH ethylene increasing ambrosia beetle infestation.
- Trees in depressions of standing water become susceptible to Ambrosia Beetle infestation

