

Pic by Phillip Kuhns

Update on Spotted Wing Drosophila

Greg Loeb & Binita Shrestha Department of Entomology Cornell University

New York State Agricultural Experiment Station

Spotted wing drosophila (SWD)

Drosophila suzukii

- Invasive pest, native to Southeast Asia
- First detected in US in 2008
- Widely established around North America
- Unlike other common fruit and vinegar flies, SWD targets intact fruits while they are still ripening on the plant making them unmarketable

Moving from crisis response to long-term integrated management of SWD

- SWD Biology
 - -seasonality
 - -crops at risk
 - -wild hosts
 - -overwintering biology
 - -short and long-distance movement
 - -host finding, chemical ecology
 - -natural enemies
- Management: short-term solutions -monitoring
 - -chemical control
 - -cultural practices
 - -exclusion netting
- Management: longer-term solutions
 -behavioral control
 - -biological control

Research efforts to manage Spotted wing drosophila (SWD)

Monitoring

Chemical control

Behavioral control

Biological control

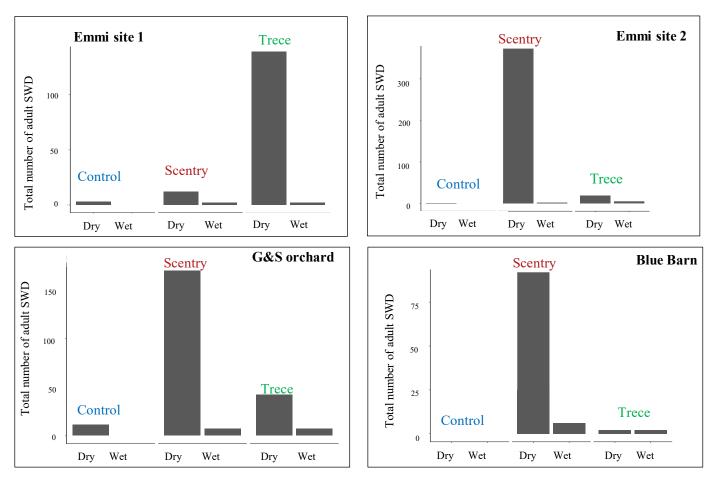
Monitoring is Key to Integrated Pest Management

-when management efforts need to be applied, increasing effectiveness

-delays in applying insecticides until they are needed, reducing environmental impacts and economic costs by saving sprays

Monitoring of SWD adults

- Most common trap (Deli cup/liquid trap) with an attractive bait and a drowning solution
- Dry red sticky panels, counting males only, are easier to use



Traps integrating (red visual cue + olfactory cue) captured more SWD than the clear deli-cup traps

New York farm's dry and wet trap trials in 2021

Dry red sticky traps are more effective to capture SWD than wet traps

Monitoring of SWD in NY- 2022

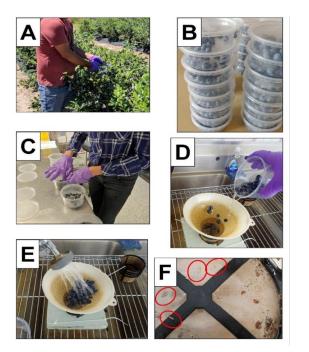
Red Sticky Trap baited with lure

- Four different sites (June-August)
- Collaboration with grower influencers

To simplify monitoring for SWD for risk assessment and initiating control

Correlate male capture with fruit infestation levels to optimize SWD monitoring

Larvae monitoring

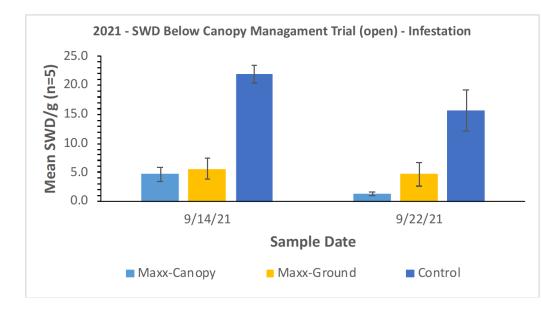


F C C C

Salt flotation

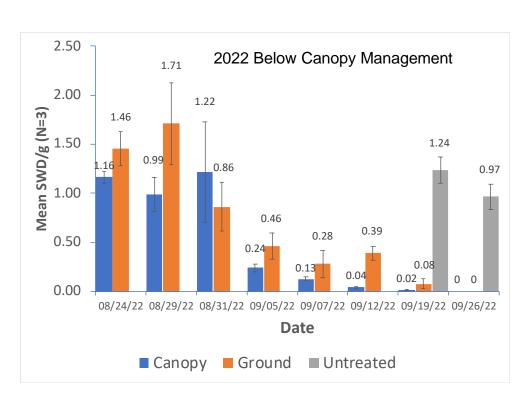
Goal: develop economic based aid tool to help growers to make optimal SWD control decisions

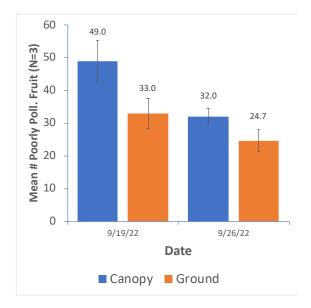
Monitoring of SWD larvae


Salt flotation to check for SWD larvae

- A. Collect berries
- B. Put the berries in the cups
- C. Crush the berries
- D. Add salt solution and leave for an hour
- E. Filter the solution through mesh
- F. Count the SWD larvae

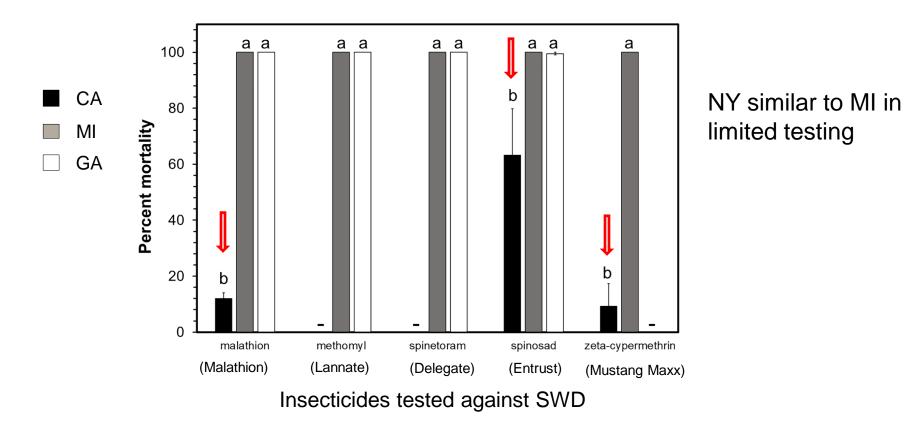
Majority of control efforts for SWD rely on chemical control


- > weekly insecticide applications
- Insecticides can be very effective, but they have disadvantages:
 - non-target effects
 - health risk
 - secondary pests
 - insecticide resistance
 - costly


Insecticides: Below Canopy Sprays

Insecticides: Below Canopy Sprays

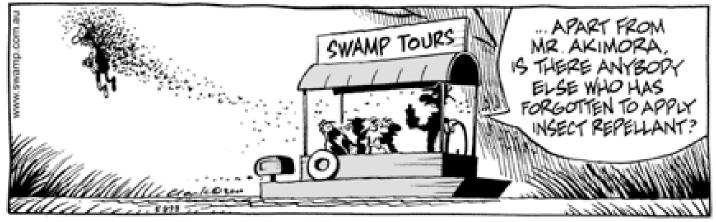
Insecticide resistance trial


RAPID = <u>Rapid Assessment Protocol for ID</u>entification of resistant SWD populations

Van Timmeren et al. Pest Manage. Sci. 2019

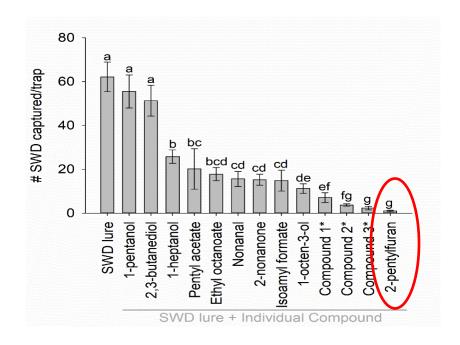
Dose-Response Panel:

- O malathion
- O methomyl
- O spinetoram
- O spinosad
- O zeta-cypermethrin
- O bifenthrin
- O fenpropathrin
- O acetamiprid
- O cyantraniliprole


Resistance high in California, but low in Michigan and Georgia

How can we manage Insecticide Resistance?

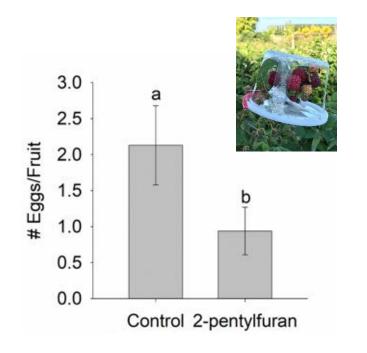
- Maximize number of effective active ingredients used in rotation programs
- Avoid treating non crop areas
- Participate in resistance monitoring efforts
- Report concerns about control failures

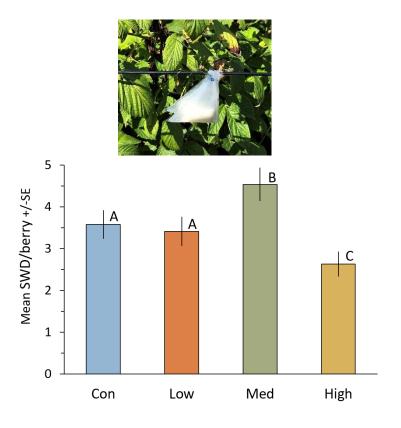

Behavsioral Control Focus on Repellents

Repellents defined as any substance that elicits an avoidance reaction in an organism -Detheir 1947

Behavioral manipulation using repellent

Discovery of 2-Pentylfuran





2-Pentylfuran

Pest Manag Sci, 2021: Cha et al.

Field Tested 2-Pentylfuran on a small to medium scale

Pest Manag Sci, 2021: Cha et al.

2pf treatment

Puffer to deploy 2PF repellent in the field

Features of Puffer

- Automated dispenser •
- Release 8 mg per puff (puff every 1 min.) •
- Time set up: 6 am to 10 pm (16 hours/ • day)

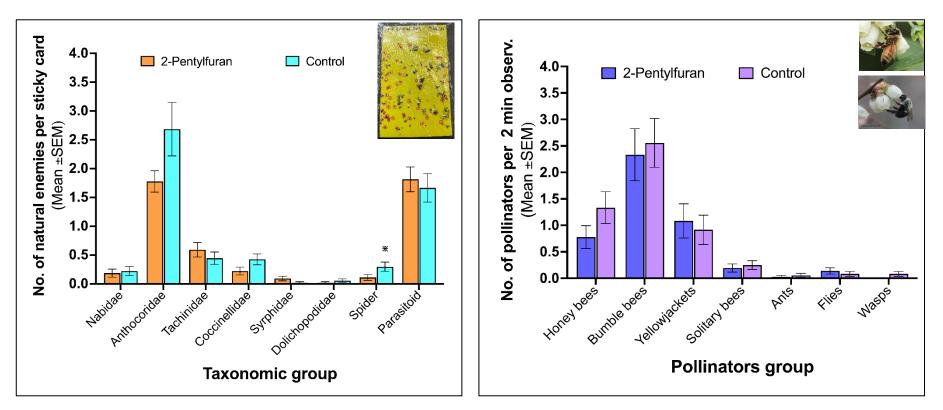
°F(10.0°C)

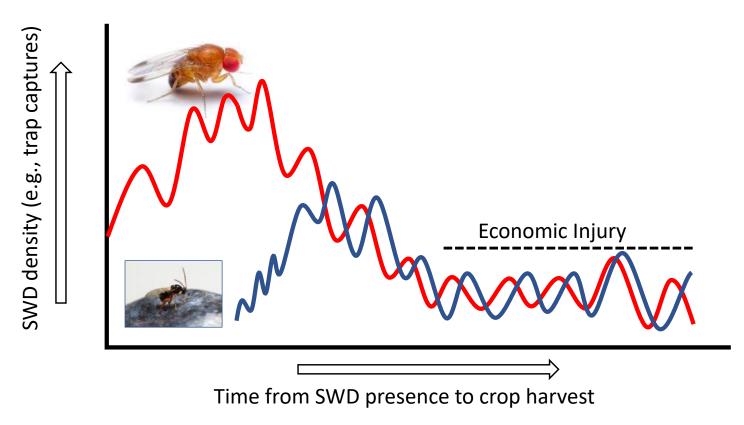
درک Setting

Fall bearing raspberries (Primocanes)

High SWD pressure (August-September)

16 hours/d at 1 puff/ min (8mg/puff)


Fruit infestation



Are there any effects on natural enemy and pollinator activity?

Classical BioControl – Introduction of Exotic Natural Enemy

Larval parasitoids

Importation Bio-Control

G1 - Ganaspis brasiliensis (Figitidae)

- 3 different species tested
- This species selected for safety and efficacy

Federal approval to release in US

Leptopilina japonica (Figitidae)

Not approved for release because it has a slightly wider host range

- Accidently made it to many areas in the Northeast and down to at least NC
- Found in several sites before releasing Ganaspis

New USDA CPPM Grant Award

Classical Biological Control For Spotted-Wing Drosophila In The Northeastern United States

Phil Fanning, U. Maine

Cesar Rodriguez-Saona, Rutgers

Greg Loeb, Cornell

Ganaspis releases in NY - 2022

- Released in wild habitat
- At four sites: 600 parasitoids released

Surveys of parasitoids establishment

- ✓ sampling of fruits from wild hosts
- ✓ sentinel traps baited with infested fruit

Future directions

- Improve monitoring methods to develop economic-based tools for SWD control
- Continue assessing benefits and potential of below canopy insecticide applications
- Optimize the deployment method of 2PF in combination with other control measures
- Evaluation and optimization of G. brasiliensis releases and establishment

Acknowledgements

Greg Loeb Stephen Hesler Karen Wentworth Yaro Grynyshyn Olive Mccall Erica Miller Gabrielle Brind'Amour

-Christophe Duplais

-Dong Cha

-Corey Reese

Agriculture and Markets

Thank you!

Questions??