Insect Pest Management of Stone Fruit in the Hudson Valley of NYS

Oriental Fruit Moth Grapholitha molesta Invasive: China 1913

Codling Moth Cydia pomonella Invasive: Asia-Europe 1700's ?

Plum Curculio Conotrachelus nenuphar Native

Brown Marmorated Stink Bug Cydia pomonella Invasive: Asia-Europe 1700's ?

2022 New England Vegetable and Fruit Conference DoubleTree Hotel in Manchester, New Hampshire December 13-15

Peter J. Jentsch

Poma Tech Inc.

Tuesday, December 13th @ 2:30 PM

Insect Pests of Stone Fruit

- American plum borer
- Cherry fruit fly (Native & European)
- Fruitworms and Leafrollers (GFW, OBLR...)
- Green Peach Aphid
- European red mite, two spotted spider mite
- Spotted Lanternfly (Hudson Valley)
- o Oriental fruit moth*
- Peachtree borer* & Lesser peachtree borer
- o Plum curculio*
- o Stink bugs*
- o Tarnished plantbug*
- Spotted Wing Drosophila*

Occasional pests:

Japanese beetle, Lecanium scale, rose chafer, San Jose scale White (Prunicola) Scale, Western Flower Thrips.

Insect Pests of Stone Fruit Peach & Nectarine

- American plum borer
- Fruitworms and Leafrollers
- Green Peach Aphid
- Lesser peachtree borer
- European red mite, two spotted spider mite
- Spotted Lanternfly

Oriental fruit moth*

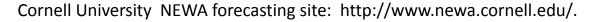
- o Peachtree borer
- o Plum curculio*
- o Stink bugs*
- Tarnished plantbug*

Occasional pests:

Japanese beetle, Lecanium scale, rose chafer, San Jose scale White (Prunicola) Scale, Western Flower Thrips, Spotted Wing Drosophila

Poma

Orchard Management & Consultation


Tech

Oriental Fruit Moth Grapholita molesta

- Primary Insect Pest in Peach
- Native to China; introduced about 1913

- OW stage as pupa in silk cocoon, often within the orchard
- Eggs laid on the surface of leaves
- The 1st gen. larva tunnel into newly growing shoots, killing the terminal bud
- Larvae undergo 4-5 instars stages
- The adult is small, mottled dark primary winged moth ¼" length
- 2nd 3rd Gen. cause fruit infestation (Gummosis & Frass)

Oriental Fruit Moth, Grapholita molesta Primary insect pest in stone fruit 1st Gen. Flagging shoot Infestation

Oriental Fruit Moth 2nd Gen. fruit Infestation

Oriental Fruit Moth Monitoring

• Wing-Trap

OFM

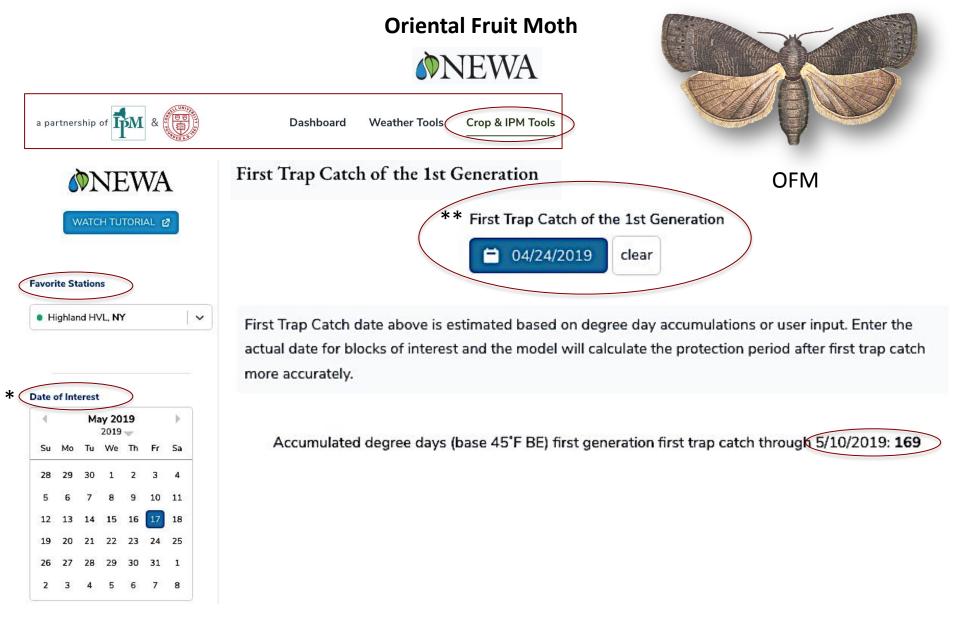
• OFM Pheromone

- Grid patterned liner
- 1 trap per 10 acres for 30- to 80-acre orchards
- 1 trap per 20 acres for orchards larger than 80 acres.

Threshold: 10 OFM /trap/week

Oriental Fruit Moth Predictive Modeling

F BE degree days to identify treatment windows along with management guidelines.


NEWA

OFM Trap data to establish Biofix

- 1. Log-in
- 2. Crop IPM Tools
- 3. Apples
- 4. Insects
- 5. Pest: Oriental Fruit Moth
- 6. Degree Day Accumulation Calculator

- * 'Todays' date
- ** Biofix Date of Sustained catch (Often weather dependent)

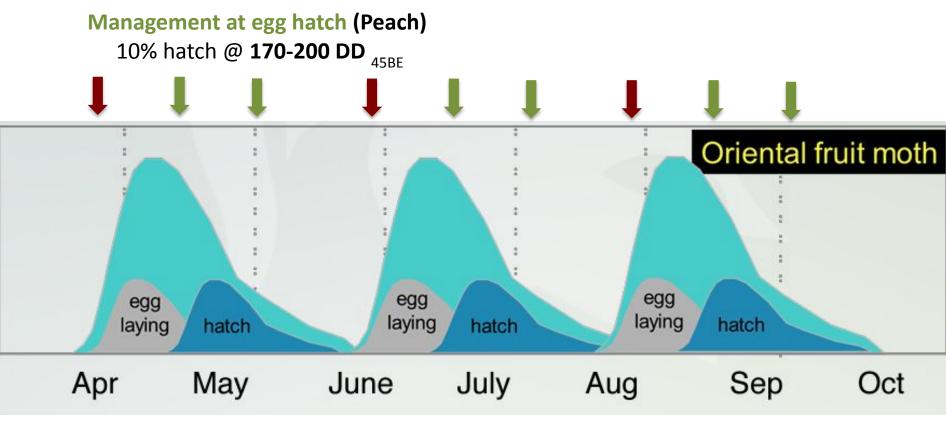
Oriental Fruit Moth Grapholita molesta

• Life Cycle

***OFM mature faster in peach** than on apple Approximately 20-60 degree-days earlier emergence then on apple

1st Generation OFM management begins for Peach @ (170-200 DD $_{45BE}$) Apple @ (200-220 DD $_{45BE}$)

*May 2007. Journal of Economic Entomology 100(2):421-30. C.T. Myers, L.A.Hull, G. Krawczyk

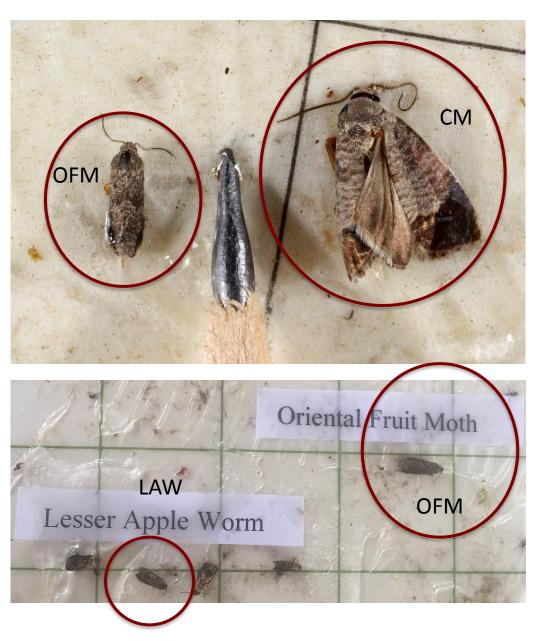


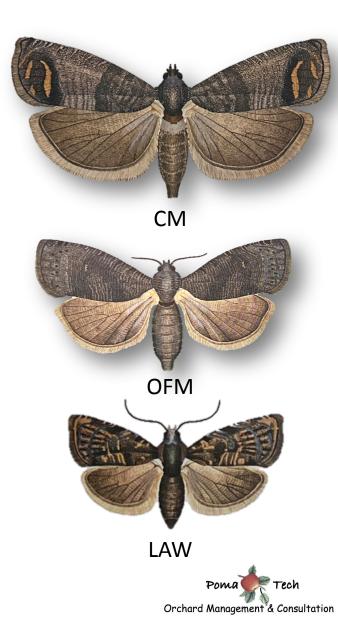
Oriental Fruit Moth Grapholita molesta

• Life Cycle

Biofix First sustained adult flight Begin DD Accumulations

***OFM mature faster in peach** approximately 20-60 degree-days earlier emergence on peach than on apple (200-220 DD _{45BE})


3 overlapping generations / yr. in Hudson Valley

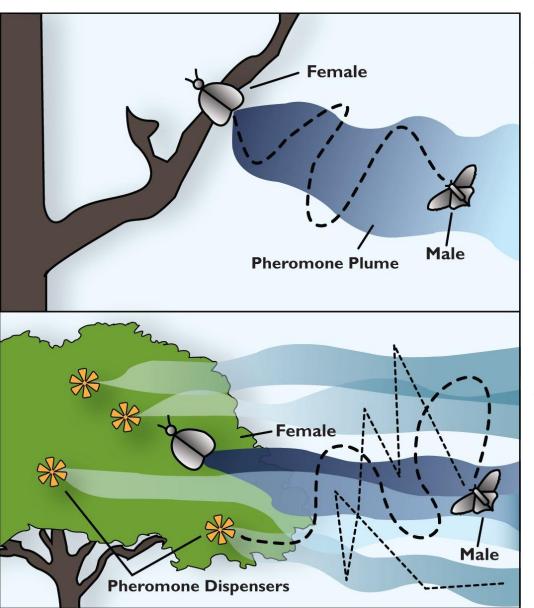

*May 2007. Journal of Economic Entomology 100(2):421-30. C.T. Myers, L.A.Hull, G. Krawczyk

Oriental Fruit Moth Pheromone Trap Monitoring

Pheromone Monitoring Genus: Tortricidae June 5th

Oriental Fruit Moth Management

Pesticide Labels


READ THE LABEL

The labels provides direction for individual product. Using a pesticide in a manner inconsistent with its labeling is a violation of federal law. The label provides information on:

- Mixing pesticides
 - Mixing pesticides together in the same tank. Incorrect tank mixes can...
 - Result in physical or chemical incompatibilities.
 - It can increase or *decrease* the efficacy of each or all ingredients.
 - Become toxic to the plants.
 - Sprayer Calibration is critical to optimize product efficacy and application costs

Sequence of materials:

- 1. Wettable powder (WP) and dry flowables (DF) or water dispersing granule WDG
- 2. Flowable and microencapsulated products.
- 3. Emulsifiable concentrates
- 4. Soluble powder products
- Crop oils or surfactants should be added last. (Increases penetration into plant tissue (Captan)
- Application, Storage, Disposal

Advantages

- Insecticide Resistance Management
 - Reduce population density & chemistry selection pressure
- Season long activity
 - Synthetic pheromone OFM & CM
 - 'Confuse' the male cannot find females
- No mating, no fertile eggs
- Results in low larval presence in the orchard
- Additional insecticides for OFM or CM (using duel MD components) may be needed due to:
 - High endemic pressure
 - Migration from non-MD orchards
 - * Monitor MD blocks w/ phero. traps

Late MD from Pink to Bloom: (Can be placed while hanging DWB pheromone)

- Set pheromone traps to monitor OFM
- Pheromone Mating Disruption
 - 5-10 acres minimum MD block size
 - Isomate twin ties (CM / OFM TT combo) 200 Ties/A

 Example. In an orchard 12' x 3' tree spacing = 1210 trees per acre. (1210 Trees & 200 ties / A placed every 6th tree)

Late Pink to Bloom:

- Set pheromone traps
- Pheromone Mating Disruption
 - 5-10 acres minimum MD block size
 - Isomate twin ties (CM / OFM TT combo) 200 Ties/A
 - CideTrak (Meso dispenser) 18-36/A. Less time in upper canopy deployment

Use of a duel MESO PVC clip holder and 'bamboo' pole to place MD in upper canopy of tree.

Oriental Fruit Moth Management

Mating Disruption

Late Pink to Bloom:

- Set pheromone traps
- Pheromone Mating Disruption: Automated Dispensers

Suterra CheckMate[®] Puffer[®] CM-OFM

- Puffer @ 1-2**^PA** in min. of 15-20+A
- Minimum 2 traps per block
- Check pheromone traps weekly
- 2-month replacement cartridge

Pacific Biocontrol Isomate CM/OFM Mist

- Activate during evening mating flights On/Off 5:00PM-12AM
- Mister @ 1-2/A in min. of 15-20+A in grid pattern
- Minimum 2 traps per block
- Check traps weekly
 - 2-month replacement cartridge

Late Pink to Bloom:

- Set pheromone traps
- Pheromone Mating Disruption
 - Sprayable OFM pheromone (Flowable)

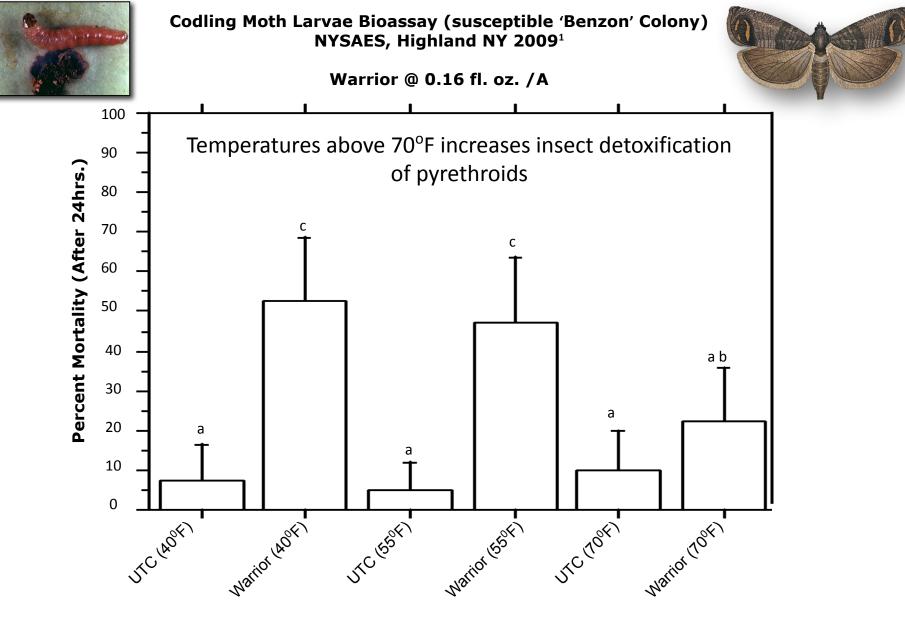
Application

- Onset of application made prior to 1st OFM generation flight.
- Mixed and applied immediately
- Rates @ 1.32 2.93 fl. oz./ A (Max. 22.0 oz./A)
- 7-16 Apps/season; 2.0 oz./A = 11 Apps/season to cover 2-3 generations

Monitoring

- Place a minimum 2 traps per block to determine efficacy of MD.
- Check traps weekly, replacing lures every other month

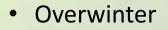
Oriental Fruit Moth Management


Insecticide Management

Group I	IRACInse	ecticide	Rate	PHI _{(I}	.D)	REI _{(۱}	Hrs)	Effic	сасу	
			DG 3-4.		•			4	High	
(, ,	prole 50SL	fl.oz./A 10.9-22.0	0	fl.oz	z./A	7		High	
	Verdepry	/n 100SL	5.5-11.0	†I.OZ	/A	7	4	High	ן 	
•	. ,	-	e 25WG		-				Higł	ן
I	Entrust 2	.SC 4-8	fl.oz./A	1	4	Moc	Jerat	:e		
Pyrethroid	ds (3A)) Mustang	g MAXX	1.28	3-4.0	fl.oz	/A	14	12	Moderate
١	Warrior I	I 2.08CS	1.28-2.56	5	fl.oz	<u>'</u> ./A	14	24	Mod	lerate
ſ	Baythroi	d XL 1EC	2.0-2.4	fl.oz	<u>'./A</u>	7	12	Мос	derate	ġ
			7-21.3 fl.oz		-					
Neonicotir	noids	(4A) Assa	ail 30SG	5.3-	8	oz.//	A	7	12	High
Carbamate	es (1A)) Sevin XLF	R Plus 2-3	qt.//	A	3	12	Мос	derate	5

	gement Int							
Group	IRACInsecticide	Rate	PHI _(D)	REI _(Hrs)	Efficacy			
Diamide Pyrethroi	(28/3A) Besiege vid	6-12 fl	oz./A	14 24	High			
Neonicot Pyrethro	tinoid (4A/3A) Lev id	erage 360	2.4-2.8 f	fl oz./A	7 12 High			
Diamide Neonicot		Flexi WDG	4-7 oz.,	/A 14	24 High			
Diamide Mectins	(28/6) Minecto	Pro 8.0-	-12.0 fl.o	oz./A 21	12 High			
Insecticide Rotation Use the <u>same (IRAC) active ingredient during each generation</u> Example: During the 1 st Generation, make 1-2 applications of Altacor 35WDG (IRAC 28)								
Alternate the active ingredient ie different active ingredient class (IRAC) during each generation								

During the 2nd Generation, make 1-2 applications of Delegate 25WG (IRAC 5)

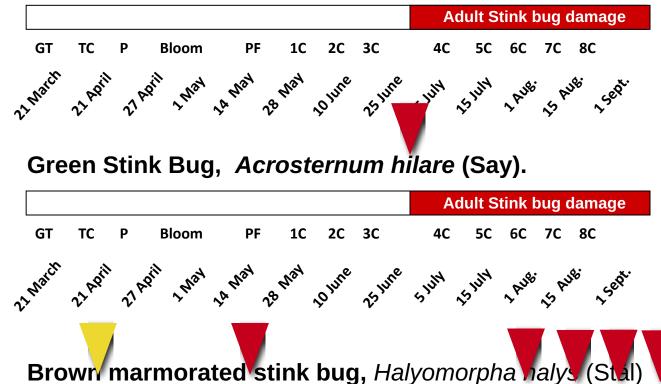


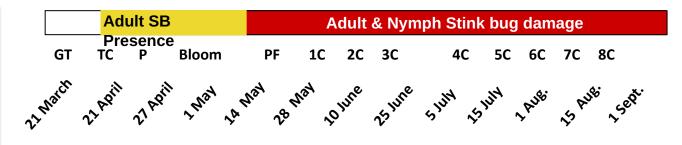
Temperature

¹ Bioassay conducted on 1st instar codling moth larva topically treated with 1μL droplet of lamda-cyhalothrin at 0.0005 μg A.I./ 1000 mL or 0.0005 ppm [**3% of the labeled field rate**] placed in temperature controlled chambers over 24 hours.

(df = 3, F-value = 8.648, P-value = 0.0001).

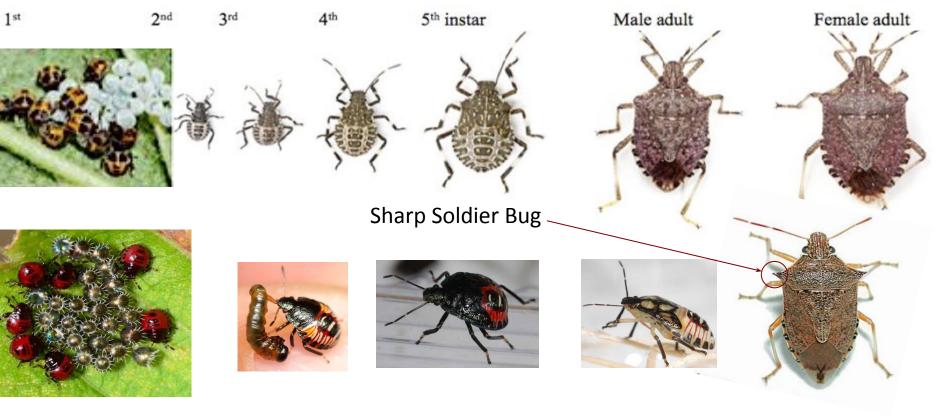
Stink Bug Complex - Peach




- Woodland tree bark
- Rock outcroppings
- Man-made structures
- Mouthparts
 - Piercing-sucking
 - Siphon plant juices

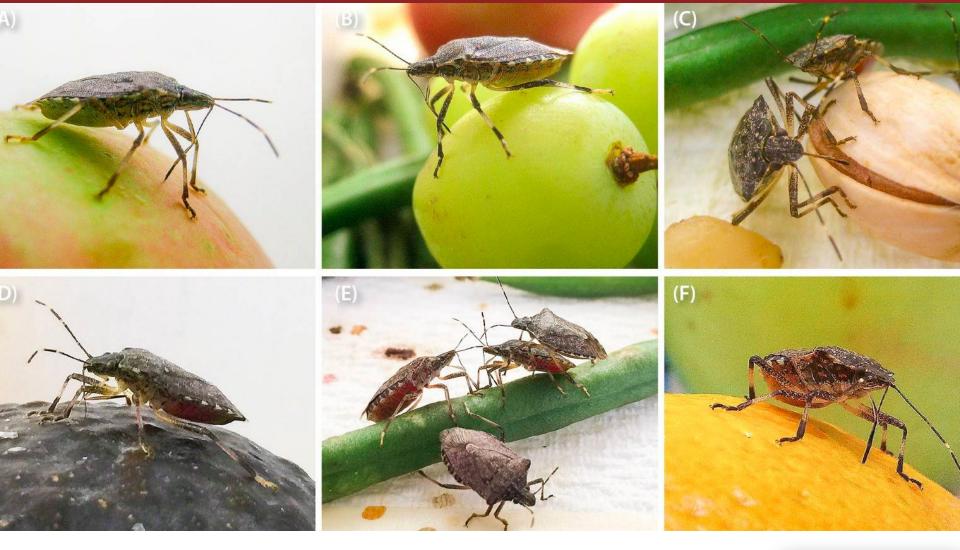
Hudson Valley Stink Bug Complex Species of economic importance

Brown Stink Bug, *Euschistus servus* (Say)



BMSB: Identification

Green Stink Bug


BMSB: Body Mass High A.I. Rates Required for Mortality Relative to Plum Curculio

BMSB: Residual Efficacy

Large Body Mass, Feeding Sheath & Limited Abdominal Contact with Fruit

BMSB: Residual Efficacy

Large Body Mass, Feeding Sheath & Limited Abdominal Contact with Fruit

August 12th 2014

10 Days

August 25th 2014

Management: Insecticide Options

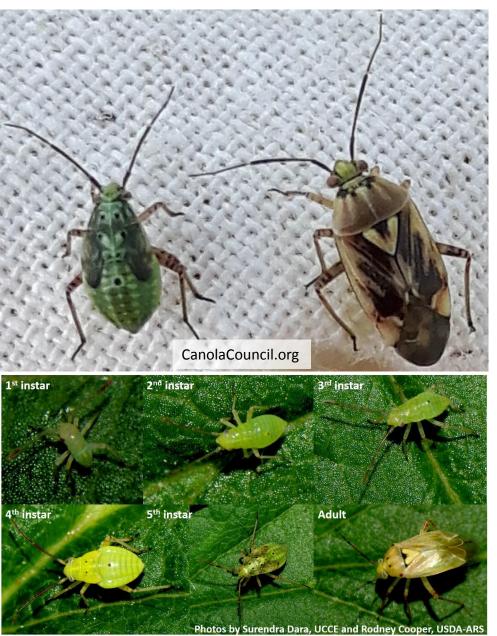
Product	Active ingredient	Rate / A	REI Hrs.	PHI Days	Efficacy (USDA)	Max. per crop / season	App. Interval
Actara 25WDG	Thiamethoxam	2.0-5.5 oz/A	12	35	+++	16.5 oz./A (0.258 lb. a.i./A)	10d
Asana XL 0.66EC	Esfenvalerate	4.8-14.5 fl oz/A	12	21	++	101 fl oz/A (0.525 lb Al/A).	NA
Baythroid XL 1EC	Beta-Cyfluthrin	1.4-2.8 fl oz/A	12	7	++	2.8 fl oz/A (0.022 lb AI/A).	14d
Bifenture EC	Bifenthrin	5.2-12.8 fl oz/A	12	14	++++	32 fl ozs (0.50 lbs ai)	30d
Bifenture 10DF	Bifenthrin	12.8-32.0 oz/A	12	14) (++++)	80 ozs (0.50 lbs ai)	30d
Brigade WSB	Bifenthrin	12.8-32.0 oz/A	12	14	++++	80 ozs (0.50 lbs ai)	30d
Closer SC***	Sulfoxaflor	2.75 – 5.75 fl oz/A	12	7	+	17.0 fl ozs (0.266 lbs ai)	7d
Danitol 2.4EC	Fenpropathrin	10.66-21.33 fl oz/A	24	14	+++	42.56 fl ozs (0.80 lbs ai)	10d
Endigo ZC	Thiamethoxam Lambda-cyhalothrin	5-6 fl oz/A	24	(35) (28)	+++++	19 fl oz./A (0.172 lb ai) NY	(10d)
Gladiator	Zeta-Cypermethrin / Avermectrin B1	19.0 fl oz/A	24	28	+++++	19 fl oz./A (0.172 lb ai) NY	21d
Lannate 2.4LV*	Methomyl	2.25 pt/A	72	14	+++++	240 ozs (0.50 lbs ai)	7d
Lannate 90SP*	Methomyl	8-16 oz/A	72	14	++++	5.0 lbs	7d
Leverage 360	Beta-Cyfluthrin / Imidacloprid	2.4-2.8 fl oz/A	12	(7)	+++	2.8 fl oz/A	14d
Surround 95WP	Kaolin	25-50 lb/A	4	0	+	NA	Od
Voliam Xpress EC	Chlorantraniliprole / Lambda-cyhalothrin	6-12 fl oz/A	24	21	+++	31.0 fl oz/A	10d
Vydate 2L*	Oxamyl	4-8 pt/A	48	14	++	281 fl oz/A (128 oz Al/A).	7d
Warrior 1CS	Lambda-cyhalothrin	2.56-5.12 fl oz/A	24	21	++	20.48 fl. oz. (0.28 lb. a.i.)**	5d
Warrior II 2.08CS	Lambda-cyhalothrin	1.28-2.56 fl oz/A	24	21	++	10.24 fl. oz. (0.28 lb. a.i.)**	5d

* Although these materials have excellent topical ratings in lab bioassay studies, field efficacy studies have shown economic fruit injury from BMSB feeding, suggesting low residual levels.

** Post bloom applications

*** Feeding inhibition up to 72hr. post application

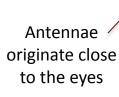
(+) low to (++++) high efficacy


*** Venerate XC: Bioinsecticide

2EE 0 DTH

In 2019 HVRL Field studies provided strong anti-feeding response of pome fruit

Tarnished Plant Bug, TPB Lygus lineolaris (Miridae) Biology


Mirid 'Plant' bugs:

- 5 instar stages
- Two gen./ year
- Piercing-sucking

- Active at 70°F in broad leaf plants
- Feed on young, rapidly growing tissue
- <u>All stages inject toxins while feeding</u>

Toxin discolors, distorts, kills plant tissue Gummosus during mid-late season feeding

Trianglar / plates

Poma Tech Orchard Management & Consultation

TPB Peach Injury: Gummosis Image: Utah State University Extension

TPB Peach Injury: Catfacing, Gummosis, Invagination

Tarnished Plant Bug Monitoring

Control weeds: in orchards to reduce TPB egg laying and overwintering sites.

Survey: Mid-April to early May, examine plants for bleeding wounds, brown discolored tissues, and other malformations, adult TPB on fruits, flowers, and foliage of susceptible crops.

Monitor: using non-UV-reflecting white sticky boards for adults in spring.

TPB Economic thresholds

2.4 TPB / trap by tight cluster

4.1 TPB / trap by late pink.

Monitoring in peaches and nectarines is critical at petal fall to shuck fall.

Tarnished Plant Bug

Insecticide Management

Group	IRACInse	ecticide	Rate	PHI _(D)	REI _{(F}	Hrs)	Effic	асу	
Pyrethro	oids (3A) Ambush	25WP	6.4-19.2	oz.//	Д	14	12	High
	Asana XL	0.66EC	4.8-14.5	fl.oz./A	14	12	High	Ì	
	Baythroi	d XL 1EC	2.0-2.4	fl.oz./A	7	12	High)	
	Danitol 2	2.4EC 10.7	′-21.3 fl.oz	z./A 3	24	High	ר		
	Mustang	g MAXX	1.28-4.0	fl.oz./A	14	12	High	Ì	
	Pounce 2	25 WP	6.4-16.0	fl.oz./A	14	12	High		
	Warrior	II 2.08CS	1.28-2.56	5 fl.oz	/A	14	24	High	1
Diamide Pyrethro	(28/3A) bid	Besiege	6-12 fl	oz./A	14	24	High	I	
Neonico	tinoids	(4A) Assa Acta	ail 30SG ara 25WD0	5.3-8 G 4.5-	oz.// 5.5			12 14	Moderate 12 High
Neonico Pyrethro	tinoid (4A, oid	/3A) Leve Endigo Zo	•		fl.oz :./A	-		12 High	High า
Diamide Neonico	(28/4A) tinoid	•	6-12 fl.oz lexi WDG			High 14	ו 12	High	1

Plum Curculio *Conotrachelus nenuphar* Apricot, Plum, Prune, Peach, Cherry

Oviposition / Egg Laying

Feeding

1/5 inch (6.0 mm)

Plum Curculio (PC) Conotrachelus nenuphar

Primary pest of stone fruit in NYS & New England.

- True Weevil (Family: Curculionidae) curved Rostrum
- Hosts include apricot, plum, peach, nectarine, cherry
- Most prevalent in orchards with **hedgerows & woodlands**.
- **Egg-laying** in fruit create a crescent scar, resulting in misshapen fruit and internal feeding from developing larva.
- Feeding leaves a small fresh / callused hole (expands)

*<u>Apricot and plum</u> fruits are more damaged than apple and peach by Plum Curculio in West Virginia. Apricot had the highest percentage of injury followed by Japanese plum, European plum, apple, peach, sweet cherry, sour cherry and pear.

Journal Of Entomological Sciences. April 1, 2005 Brown, M.W. 2005. Host Utilization And Phenology Of Injury By Plum Curculio (Coleoptera: Curculionidae) In West Virginia. Journal Of Entomological Sciences. J. Entomol. Sci. 40(2): 149-157 (2005).

Poma Tech Orchard Management & Consultation

Plum Curculio (PC)

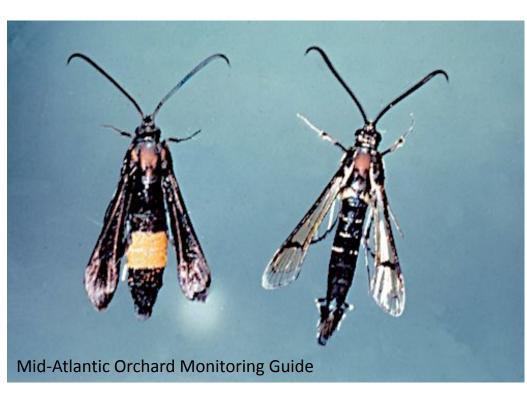
Life History:

- The adults overwinter along wooded edges, fence rows, brush piles, rock walls in protected orchard locations.
- Adults become active in spring as <u>mean temperature</u> exceeds 60° F. or <u>maximum</u> <u>temperatures exceed 75° F.</u> as tree fruit come into <u>bloom</u>.
- Emerge from overwintering quarters to feed on buds, blossoms and newly set fruit.
- The beetles attack the fruits as it reaches <u>5mm</u>
- Feeding injury into 1/8 inch into the pulp.
- Oviposition damage: Female cuts the skin with her mouth part
- Deposits a <u>single egg</u> in the opening that she pushes to the bottom of the cavity with her snout.
- In front of the egg cavity she cuts a crescent-shaped slit that extends obliquely under the egg to leave it in a flap of flesh.

Plum Curculio (PC)

Life History:

- Each female is capable of depositing from 100 to 500 eggs.
- The larvae are legless, C-shaped, develop in the fruit where they feed for several weeks before reaching maturity.
- Infested fruits may drop from the tree early. Mature larvae leave the fruit and crawl into the soil to a depth of several inches where they construct earthen pupal cells.
- During July and August, the new brood of adults begins to emerge to feed on developing fruits
- Low fall temperatures force them into hibernation.
- One generation of PC in New York State each year.



	- A					
Group IRACInsecti		cticide Mai PHI _(D)	REI _(Hrs)	Efficacy		
Asana XL 0. Baythroid X Danitol 2.4 Pounce 25	mbush 25WP .66EC 4.8-14.5 (L 1EC 2.0-2.4 EC 10.7-21.3 fl.oz WP 6.4-16.0 2.08CS 1.28-2.56	fl.oz./A fl.oz./A z./A 3 fl.oz./A	 14 12 7 12 24 Mod 14 12 	Moderate Moderate derate Moderate	2 2 2	
Pyrethroid < <u>(3A/28</u> Diamide						
Neonicotinoid (4A) A	ctara 25WDG	4.5-5.5	oz./A	14 12	High	
Neonicotinoid (4A/3A Pyrethroid E	A) Leverage 360 ndigo ZC 5-5.				-	
Mectin (6/28) N Diamide	Ainecto Pro 6-12	2 fl.oz./A	14 24	High		
Mectin (6/3A) N Pyrethroid	Iustang MAXX	1.28-4.0	fl.oz./A	14 12	High	
Neonicotinoid (4A/28 Diamide	3) Voliam Flexi					

ŵ,

Group IRACIr	nsecticide	Plu Rate	m Curculio PHI _(D)	o (Cherry) REI _(Hrs)	Efficacy	No.
Asana Baythi Musta Pounc	BA) Ambush XL 0.66EC oid XL 1EC ng MAXX e 25 WP or II 2.08CS	4.8-14.5 2.4-2.8 1.28-4.0 6.4-12.8	fl.oz./A fl.oz./A fl.oz./A fl.oz./A	14 12 7 12 14 12	Moderate High Moderate	
Diamide (28/3/ Pyrethroid	A) Besiege	6-12 fl	oz./A	14 24	High	
Neonicotinoids	(4A) Act	ara 25WD	G 4.5-	5.5 oz/a	acre 14 12 High	
Neonicotinoid (4 Pyrethroid		erage 360 2C 5-5.		fl.oz./A z./A 14	-	
Diamide (28/4/ Neonicotinoid		Pro 6-12 Flexi WDG			•	
Diamide (28/34 Pyrethroid		or EC 19.0 6-12 fl) fl.oz./A oz./A	21 12 14 24	High High	
Oxadiazine (2	22) Avaunt 3	BOWDG	5-6 oz./	A 14	12 High	

Peach Tree Borer, *Synanthedon sp.* (Lepidoptera: Sesiidae) Peach (all stone fruit)

Clear-winged moths (wasp-like) 1 Generation/yr.

Peach tree borer

Synanthedon exitiosa, feeds in the trunk at or just below soil level.

• Lesser peach tree borer Synanthedon pictipes, feeds primarily in the branches and limbs, injury cracks.

Overwinter within the tree as larvae.

Peach Tree Borer, *Synanthedon sp.* (Lepidoptera: Sesiidae) Peach (all stone fruit)

Mid-Atlantic Orchard Monitoring Guide

• Borer / larvae:

White to cream colored, are hairless with yellow-brown legs & dark brown head.

Clear-winged moths (wasp-like) 1 Generation/yr.

- Peach tree borer (PTB) Synanthedon exitiosa, feeds in the trunk at or just below soil level.
- Lesser peach tree borer (LPTB) Synanthedon pictipes, feeds primarily in the branches and limbs, injury cracks.
 - Adults LPTB emerges first, emerging from pupa in mid-late May, PTB in June.
 - Females produce 400-800 eggs, hatch beginning mid-July

Orchard Management & Consultation

Peach Tree Borer, *Synanthedon sp.* (Lepidoptera: Sesiidae) Apricot, Plum, Prune, Peach, Cherry

Mid-Atlantic Orchard Monitoring Guide

Clear-winged moths (wasp-like) 1 Generation/yr.

Peach tree borer

Synanthedon exitiosa, feeds in the trunk at or just below soil level.

Lesser peach tree borer

Synanthedon pictipes, feeds primarily in the branches and limbs, injury cracks.

Injury: Cankers

Upon larval hatch, larva feed on tree cambium producing **dark frass.**

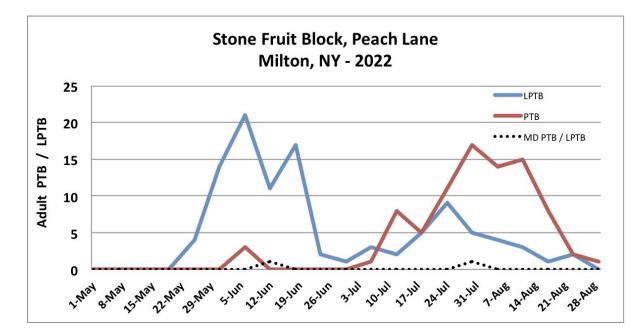
 Tree responds by producing gummosis.

Peach Tree Borer Monitoring & Management

Monitoring

- Placement of pheromone traps in early May to determine adult male presence.
- Assess trees for trunk (PTB) and limb (LPTB) damage

Threshold: 1 borer larvae / tree. Fresh frass or gummosus



Peach Tree Borer Monitoring & Management

Monitoring Presence & 1st flight Trap Shutdown in MD Blocks

Maintaining trap numbers allows us to assess the efficacy of mating disruption programs.

Grapghs provide historical and efficient visual reference.

Photos: R. Bessin University of Kentucky Entomology

Peach Tree Borer Monitoring & Management

Monitoring

- Placement of pheromone traps in early May to determine adult male presence.
- Assess trees for trunk (PTB) and limbs (LPTB)

Threshold: 1 borer larvae / tree. Fresh frass or gummosus

Management:

- Mating disruption: Isomate-PTB Duel pheromone @ 150 / A, prior to 1st flight by Mid-May. (CBC (America) Corp.)
- Insecticide applications to trunk and lower limbs, Late May, Early July, Early August

Insecticide Management Peach Tree Borer – Onset of hatching larva

Group IRACInsed	ticide Rate	PHI _(D) REI _(Hrs)	Efficacy
Mustang		4.8-14.5 fl.oz./A 0 fl.oz./A 14 12 56 fl.oz./A 14	High
Pyrethroid (3A/ Mectin) Gladiator EC	C 19.0 fl.oz./A 21	12 High
Pyrethroid (3A/2 Diamide	.8) Besiege 6-3	12 fl oz./A 14	24 High
Neonicotinoid (4A/3 Pyrethroid	A) Endigo ZC	5-5.5 fl.oz./A	14 24 High

Insecticide Management Lesser Peach Tree Borer – Onset of hatching larva

Group	IRACInsecticide	Rate PHI _(D)	REI _(Hrs)	Efficacy
Pyrethro	oids (3A) Ambush	n 25WP 6.4-19.	2 oz./A	14 12 Moderate
	Asana XL 0.66EC	4.8-14.5 fl.oz./A	14 12	Moderate
	Baythroid XL 1EC	1.4-2.0 fl.oz./A	7 12	Moderate
	Mustang MAXX	1.28-4.0 fl.oz./A	14 12	High
	Pounce 25 WP	6.4-16.0 oz./A	14 12	Moderate
	Warrior II 2.08CS	1.28-2.56 fl.	oz./A 14	24 High
Pyrethro	oid (3A/6) Gla	idiator EC 19.0 fl.	oz./A 21	12 High
Mectin				
Durathra	id (24/29) Dec		oz / A 1 /	24 Uiah
Pyrethro		siege 6.0-12.0 fl.	0Z./A 14	24 High
Diamide				
Neonico	tinoid (4A/3A) End	digo ZC 5.0-5.5	fl.oz./A	14 24 High
Pyrethro		e 360 2.4-2.8 fl.	-	6
	0			

Spotted Wing Drosophila SWD Management in NYS Cherry

3-4 mm

- Spotted Wing Drosophila (SWD) is an invasive Southeast Asian species of vinegar fly, first reported in 1939 Japanese literature.
- Female SWD deposits eggs into unripened, healthy fruit.
- Larvae feed on developing fruit, unexposed to insecticide residue.
- Wounded fruit have been found to contain microbial organisms, often leading to increased rot.

Orchard Management'& Consultation

Female Drosophila species

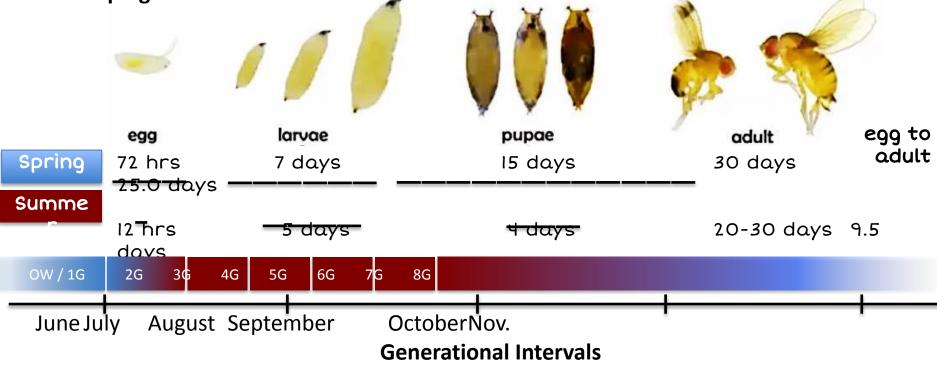
UC Berkeley & UC Cooperative Extension Photos: M. Hauser, CDFA

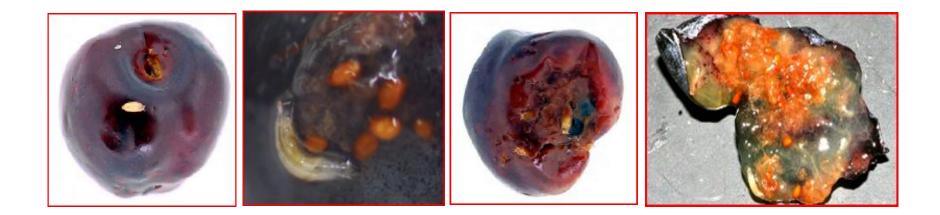
Spotted Wing Drosophila (D. suzukii)

SWD has a large, saw-like, serrated ovipositor with two even rows of teeth that are much darker than rest of ovipositor

Other Drosophila spp.

have smaller, more rounded ovipositors, sometimes with irregular, poorly defined teeth



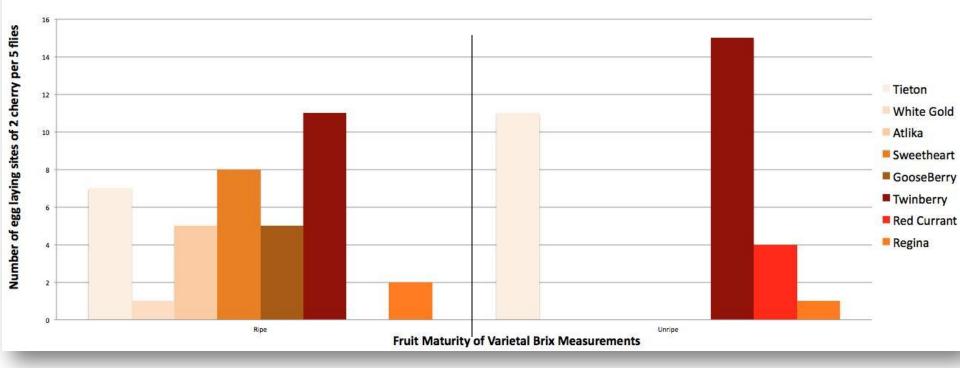

Life Cycle of the Spotted Wing Drosophila Drosophila suzukii (Matsumurai)

- Earliest 1st emergence & trap capture on 31st May (Orleans), 27th June (Dutchess), 2017
- <u>></u>6 Generations / year
- 350 eggs per female
- Majority of the population at any time exist in the immature life stage
- Insecticides primarily target the adult stage with some activity against the egg and developing larva

Fruit Affected by SWD

Highest risk	Moderate risk	Alternate hosts
Strawberries	Peaches	Wild plants with berries,
Raspberries	Grapes	such as
Cherries (Tart pref.)	Pears	Tartarian Honeysuckle
Nectarines	Apples	Snowberry
Blueberries	Tomato	Elderberry
Blackberries		Pokeweed
		Dogwood

SWD Attract and Kill Management 2015


Honeysuckle is a primary host for SWD; *L. tartarica* fruit favored over raspberry in June-August.

Begin to build in high numbers then move from alternate host to crops.

Potential for use as management sites using biological control and attract and kill for SWD in alternate hosts.

SWD Oviposition Into Ripe and Unripe Sweet Cherry, Gooseberry and Current Varietal and Maturity Preference Hudson Valley Lab, Highland NY. July 1, 2013

SWD oviposition during pre-harvest and ripened development.

Male and Female flies were introduced to fruit, and allowed 48 hours to oviposit before they were removed and eggs were counted.

Each fruit was isolated with 2 cherry (fruit) of each V. and 5 female SWD adults.

Chemistries for Fruit Production: SWD

Class	IRAC Code	Examples	SWD Efficacy
Organophosphates	1 B	Malathion	Excellent to good
Pyrethroids	3A	Brigade, Danitol, Mustang Max	Excellent
Spinosyns	5	Delegate, Entrust	Excellent to good
Neonicotinoids	4 A	Assail	Good to poor
Carbamates	1A	Sevin	Good to poor
Diamide	28	Exirel*	Excellent to good

Survey on insecticide efficacy against SWD, collated by Rufus Isaacs, MSU November, 2013

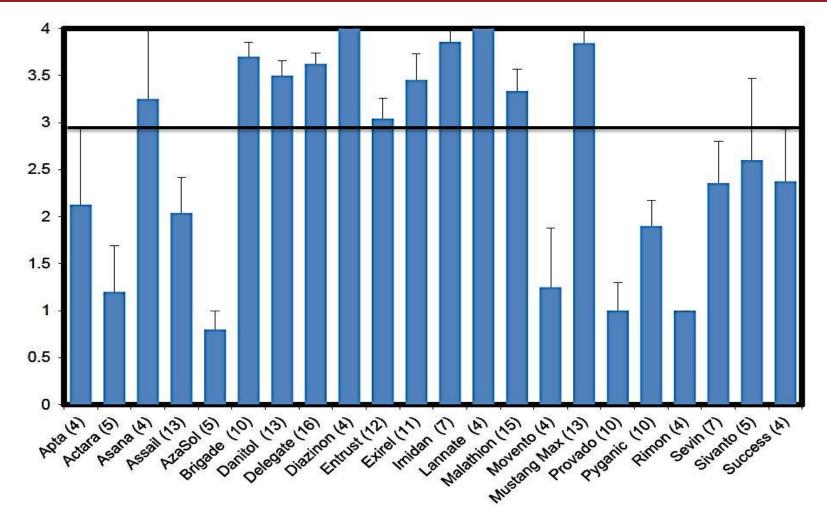
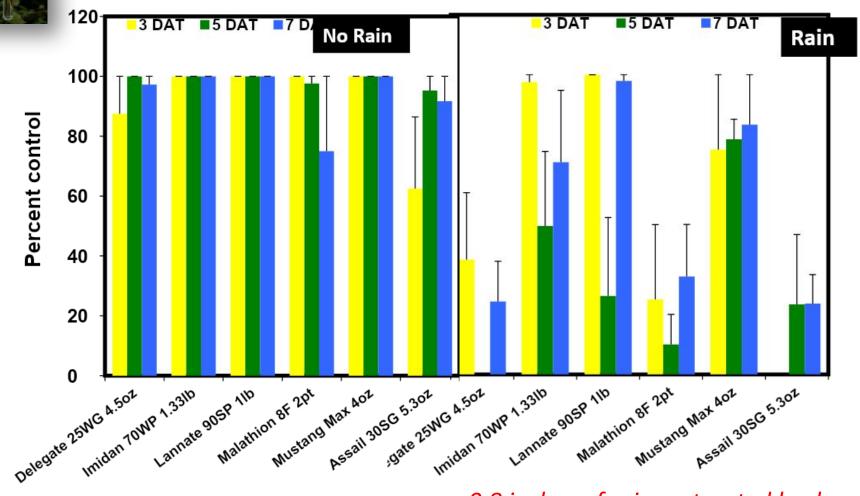



Figure 1. Average \pm S.E. efficacy rankings for 22 insecticides that have been tested against SWD in various fruit crops. Insecticides were ranked as not effective (score = 0), weakly active (1), fair (2), good (3), or excellent (4). Only insecticides that had 4 or more submitted are included in the figure, and the number of entries is shown in parentheses below the bars.

Effect of Rain on Some Common Insecticides in Blueberry From Rufus Isaacs, MSU

0.8 inches of rain on treated bushes 1 day after application

Rainfastness of insecticides

Insecticide persistence, plant penetration and rainfastness rating			Insecticide persistence, plant penetration and rainfastness rating				
Compound class	Persistence (residual on plant)	Plant penetration characteristics	Rainfast rating	Compound class	Persistence (residual on plant)	Plant penetration characteristics	Rainfast rating
Organophosphates	Medium - Long	Surface	Low	Neonicotinoids	Medium	Translaminar & Acropetal	Moderate
Carbamates	Short	Cuticle Penetration	Moderate	Oxadiazines	Medium	Cuticle Penetration	Moderate
Pyrethroids	Short	Cuticle	Moderate	Avermectins	Medium	Translaminar	Moderate
	Penetratio	Penetration	- High	IGRs	Medium - Long	Translaminar	Moderate
				Spinosyns	Short - Medium	Translaminar	Moderate - High
				Diamides	Medium - Long	Translaminar	Moderate - High

Rainfall influences performance of insecticides on the codling moth (Lepidoptera: Tortricidae) in apples. John C. Wise,1 Daniel Hulbert, Christine Vandervoort. Can. Entomol. 149: 118–128 (2017)

Thank you

Questions??

