Air Blast Sprayers for Sweet Corn - Calibration and Adjustment

George W. Hamilton
Extension Field Specialist
UNH Cooperative Extension - Hillsborough County
329 Mast Road - Room 101, Goffstown, NH 03045
george.hamilton@unh.edu

As stated on the pesticide label – the sprayer needs to be calibrated before you spray!

Proper calibration of air blast sprayer equipment is the only way to ensure spray applications are effective, efficient, and economical. Poor spray coverage is the primary cause of reduced spray product performance. Regular care and maintenance will ensure the sprayer is residue-free and serviceable when needed.

A sprayer should never be operated without first checking the calibration for the following reasons:
1. To determine the precise rate of material applied per acre.
2. To ensure each nozzle tip is operating at the manufacturer’s specification.
3. To compensate for equipment changes, crop staging, and environmental conditions.

Calibration Factors Affecting Application Rate

- **Ground Speed**
 A uniform ground speed is necessary to maintain even spray application. The spray application per acre varies inversely with the ground speed of the sprayer. If the ground speed is doubled the application rate is cut in half and as the ground speed is reduced to half, the spray application is doubled. Rate controllers can only compensate for this within certain limits and can sometimes have a negative impact on spray quality.

- **Nozzle Flow Rate**
 The flow rate through the nozzle varies with the tip size, the pressure applied, and the condition of the tip.

Caution - When Spraying Sweet Corn Using an Air Blast Sprayer

Commercial sweet corn growers must use spray application equipment capable of depositing spray material at the ear zone. Drive rows are necessary for use of the air blast sprayer. Blocks between drive roads should not exceed 16 rows to allow sufficient spray coverage of the ear zone, if air blast sprayer is used from both sides. When raising taller growing sweet corn varieties, growers should consider having 12 row blocks so that better spray coverage of the ear zone can occur. Drive roads between blocks also aid in ease of harvest.
Growers need to apply insecticide with enough water. With air blast sprayers, growers need 75 to 100 gallons per acre to do the job correctly. With booms that extend out over the rows, growers can get away with as little as 50 gallons of water per acre and still get good control.

Pre Air Blast Sprayer Calibration Instructions

Prior to calibrating an air blast sprayer, please complete the following tasks:
1. Triple rinse tank and piping. Take special care to flush manifolds and nozzles.
2. Be careful if using pressure wash sprayers. Some say this forces water into sealed parts like bearings. You can use push brooms and hoses to scrub them off. Pay special attention to cleaning both sides of nozzles and around pump and filters.
3. Clean nozzles and record orifice and whirl disc sizes.
4. Flush out line to pressure gauge.
5. Clean filters, including tank filters, suction filters, final filters, and every screen behind nozzles.
6. Make sure all valves, diaphragms, and O-rings are in good condition and working properly.
7. Check tire pressures on both sprayer and tractor.
8. Make sure tachometer is working on tractor.
9. Fill sprayer ½ full with clean water.
10. Please have any operators or mechanics that work with the sprayer/tractor combination on hand for the sprayer calibration.
11. Have sprayer operator’s manual on hand.

Maintenance of the Sprayer

The following practices will prolong the life of the sprayer:
1. Remove the nozzles and strainers; flush with clean water regularly.
2. Do not use any metal object when cleaning sprayer tips. Use a soft brush or try a can of compressed air (for cleaning keyboards).
3. Never apply corrosive fertilizer solutions through an air blast sprayer.
4. Remove and clean strainers daily or when products change on sequential applications, whichever comes first.

Nozzle wear occurs most rapidly when wettable powders, flowables, or dispersible granules are applied, especially at high nozzle pressures. Under these situations, the tips and cores on the sprayer should be manufactured from hard, wear resistant materials. The abrasion resistant nozzle components cost more initially, but in the long term are quite cost effective.

Calibration Notes

Recording your sprayer calibration calculations for future use is important. By having a record, you can compare your sprayer calibration calculations from calibration to calibration. This information can be useful the next time you check the calibration. This recordkeeping is also due-diligence and is important to have on hand if ever a question arises about product residue, pesticide drift, or any other spray complaint.

This IPM Project was partially funded through the New Hampshire Department of Agriculture, Markets & Foods - *Integrated Pest Management Grant Program*.
Air-Blast Sprayer Calibration Worksheet

Retain the following information for your records:

Date ________________.

Farm________________________ Operator ____________________ Phone ____________________.

Address________________________ Town ____________________ State _____ Zipcode ________.

Tractor ______________________ Sprayer____________________

Tractor Gear ________________ Tank_____________ gallons

Tractor RPM_________________ Pump Pressure_______ PSI

Measured Distance_______ feet

Time in seconds (down) _________

Time in seconds (back) _________

Average Time in seconds _________

\[MPH = \text{Miles per Hour} \]

Miles per Hour = \(\frac{\text{Distance in Feet} \times 60}{\text{Time in Seconds} \times 88} \) = \(\frac{\text{Feet}}{\text{Seconds}} \times 60 \) \(\times \) 88

For Orchards:

Block (#___________) Tree Height _____ ft. Tree Width _______ ft. Row Width _______ ft.

For Vegetable or Other Crops Sprayed:

Crop:______________________________

Block (#___________) Spray Swath Width _________ft

Linear Feet of Row per Acre = \(\frac{43,560}{\text{Row Width}} \) = \(\frac{43,560}{\text{Or Spray Swath Width}} \) = (______) Feet per Acre

Speed in Feet per Minute = MPH \(\times \) 88 = (______) MPH \(\times \) 88 = (______) Feet per Minute
Nozzle Output for Air-Blast Sprayer - To determine the left versus right side, look at the sprayer from behind

<table>
<thead>
<tr>
<th>Nozzle Output - Left</th>
<th>Nozzle Output - Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle #</td>
<td>Tip Size #</td>
</tr>
<tr>
<td>L-10</td>
<td></td>
</tr>
<tr>
<td>L-09</td>
<td></td>
</tr>
<tr>
<td>L-08</td>
<td></td>
</tr>
<tr>
<td>L-07</td>
<td></td>
</tr>
<tr>
<td>L-06</td>
<td></td>
</tr>
<tr>
<td>L-05</td>
<td></td>
</tr>
<tr>
<td>L-04</td>
<td></td>
</tr>
<tr>
<td>L-03</td>
<td></td>
</tr>
<tr>
<td>L-02</td>
<td></td>
</tr>
</tbody>
</table>

Total Left Side Manifold Output in GPM

Total Right Side Manifold Output in GPM

Total Output for Sprayer in GPM

\[\text{GPM} = \text{Gallons per Minutes} \quad \text{GPA} = \text{Gallons per Acre} \quad \text{MPA} = \text{Minutes per Acre or Minutes/Acre} \]

All Nozzles Output = (_____) GPM

Block (______) Minutes/Acre = \(\frac{\text{Linear Feet Row per Acre}}{\text{Feet per Minute}}\) = (_______) = (_______) Minutes/Acre

Output - Gallons Per Acre = GPM \times MPA = (_______) GPM \times (_______) MPA = (_______)GPA

NOTES:

George Hamilton, Extension Educator, Agricultural Resources, Hillsborough County

July 15, 2013